If you made any changes in Pure these will be visible here soon.

Fingerprint Dive into the research topics where Joe Kamimoto is active. These topic labels come from the works of this person. Together they form a unique fingerprint.

  • 3 Similar Profiles
Bergman Kernel Mathematics
Newton Polyhedron Mathematics
Riemann zeta function Mathematics
Oscillatory Integrals Mathematics
Pseudoconvex Mathematics
Asymptotic Expansion Mathematics
Pole Mathematics
Tube Mathematics

Network Recent external collaboration on country level. Dive into details by clicking on the dots.

Research Output 1996 2019

  • 46 Citations
  • 4 h-Index
  • 11 Article
  • 1 Conference contribution

Nonpolar singularities of local zeta functions in some smooth case

Kamimoto, J. & Nose, T., Jan 1 2019, In : Transactions of the American Mathematical Society. 372, 1, p. 661-676 16 p.

Research output: Contribution to journalArticle

Riemann zeta function
Singularity
Real Analytic Functions
Asymptotic Limit
Meromorphic Function
4 Citations (Scopus)

Newton polyhedra and weighted oscillatory integrals with smooth phases

Kamimoto, J. & Nose, T., Jan 1 2016, In : Transactions of the American Mathematical Society. 368, 8, p. 5301-5361 61 p.

Research output: Contribution to journalArticle

Newton Polyhedron
Oscillatory Integrals
Asymptotic Expansion
Poles
Term

On meromorphic continuation of local zeta functions

Kamimoto, J. & Nose, T., Jan 1 2015, Complex Analysis and Geometry - KSCV 2014. Byun, J., Bracci, F., Gaussier, H., Kim, K-T., Shcherbina, N. & Hirachi, K. (eds.). Springer New York LLC, p. 187-195 9 p. (Springer Proceedings in Mathematics and Statistics; vol. 144).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Meromorphic
Riemann zeta function
Continuation
Pole
Argand diagram
6 Citations (Scopus)
Newton Polyhedron
Oscillatory Integrals
Asymptotic Analysis
Riemann zeta function
Pole
2 Citations (Scopus)

Asymptotics of the Bergman function for semipositive holomorphic line bundles

Cho, K., Kamimoto, J. & Nose, T., Nov 12 2011, In : Kyushu Journal of Mathematics. 65, 2, p. 349-382 34 p.

Research output: Contribution to journalArticle

Line Bundle
Compact Manifold
High Power
Asymptotic Expansion
Metric