If you made any changes in Pure these will be visible here soon.

Fingerprint Dive into the research topics where Tomonari Sasaki is active. These topic labels come from the works of this person. Together they form a unique fingerprint.

  • 13 Similar Profiles
Radiotherapy Medicine & Life Sciences
Prostatic Neoplasms Medicine & Life Sciences
Japan Medicine & Life Sciences
radiation therapy Physics & Astronomy
cancer Physics & Astronomy
Non-Small Cell Lung Carcinoma Medicine & Life Sciences
Brachytherapy Medicine & Life Sciences
Esophageal Neoplasms Medicine & Life Sciences

Network Recent external collaboration on country level. Dive into details by clicking on the dots.

Research Output 1998 2019

  • 722 Citations
  • 14 h-Index
  • 80 Article
  • 11 Review article
  • 2 Conference contribution

Dose evaluation indices for total body irradiation using TomoDirect with different numbers of ports: A comparison with the TomoHelical method

Kasai, Y., Fukuyama, Y., Terashima, H., Nakamura, K. & Sasaki, T., Feb 1 2019, In : Journal of Applied Clinical Medical Physics. 20, 2, p. 129-135 7 p.

Research output: Contribution to journalArticle

Open Access
Whole-Body Irradiation
Dosimetry
Irradiation
dosage
irradiation

Japanese structure survey of radiation oncology in 2010

Japanese Society for Radiation Oncology Database Committee, Jan 1 2019, In : Journal of radiation research. 60, 1, p. 80-97 18 p.

Research output: Contribution to journalArticle

Open Access
Radiation Oncology
radiation therapy
radiation
Intensity-Modulated Radiotherapy
Radiotherapy
3 Citations (Scopus)

Additional radiotherapy following endoscopic submucosal dissection for T1a-MM/T1b-SM esophageal squamous cell carcinoma improves locoregional control

Hisano, O., Nonoshita, T., Hirata, H., Sasaki, T., Watanabe, H., wakiyama, H., Ono, M., Saiji, O. & Honda, H., Jan 29 2018, In : Radiation Oncology. 13, 1, 14.

Research output: Contribution to journalArticle

Radiotherapy
Esophageal Neoplasms
Esophageal Stenosis
Squamous Cell Neoplasms
Endoscopic Mucosal Resection

Bayesian delineation framework of clinical target volumes for prostate cancer radiotherapy using an anatomical-features-based machine learning technique

Ninomiya, K., Arimura, H., Sasahara, M., Hirose, T., Saiji, O., Umezu, Y., Honda, H. & Sasaki, T., Jan 1 2018, Medical Imaging 2018: Image-Guided Procedures, Robotic Interventions, and Modeling. Fei, B. & Webster, R. J. (eds.). SPIE, 105761Z. (Progress in Biomedical Optics and Imaging - Proceedings of SPIE; vol. 10576).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

machine learning
delineation
Atlases
Radiotherapy
Learning systems
4 Citations (Scopus)

Computational analysis of interfractional anisotropic shape variations of the rectum in prostate cancer radiation therapy

Haekal, M., Arimura, H., Hirose, T. A., Shibayama, Y., Saiji, O., Fukunaga, J., Umezu, Y., Honda, H. & Sasaki, T., Feb 1 2018, In : Physica Medica. 46, p. 168-179 12 p.

Research output: Contribution to journalArticle

rectum
Rectum
radiation therapy
Prostatic Neoplasms
Radiotherapy