Abstract
Let us consider (KS)m below for all N ≥ 2 and general exponents m and q. In particular, the 2-D semi-linear case such as N = 2, m = 1 and q = 2 is included. We establish an ε-regularity theorem for weak solutions. As an application, we give an extension criterion in C ([0, T] ; Lfrac(N (q - m), 2) (RN)) which coincides with a scaling invariant class of weak solutions associated with (KS)m. In addition, the Hausdorff dimension of its singular set is zero if u ∈ L∞ (0, T ; Lfrac(N (q - m), 2) (RN)) and ufrac(N (q - m), 2) ∈ Cw ([0, T] ; L1 (RN)).
Original language | English |
---|---|
Pages (from-to) | 51-70 |
Number of pages | 20 |
Journal | Journal of Mathematical Analysis and Applications |
Volume | 364 |
Issue number | 1 |
DOIs | |
Publication status | Published - Apr 1 2010 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Analysis
- Applied Mathematics