TY - JOUR
T1 - 8-Oxo-dGTPase, which prevents oxidative stress-induced DNA damage, increases in the mitochondria from failing hearts
AU - Tsutsui, Hiroyuki
AU - Ide, Tomomi
AU - Shiomi, Tetsuya
AU - Kang, Dongchon
AU - Hayashidani, Shunji
AU - Suematsu, Nobuhiro
AU - Wen, Jing
AU - Utsumi, Hideo
AU - Hamasaki, Naotaka
AU - Takeshita, Akira
PY - 2001/12/11
Y1 - 2001/12/11
N2 - Background - Reactive oxygen species (ROS) can cause an oxidative modification of nucleotides, such as 8-oxo-7,8-dihydrodeoxyguanosine triphosphate (8-oxo-dGTP), which can lead to defects in DNA replication. The misincorporation of 8-oxo-dGTP into DNA is prevented by 8-oxo-dGTPase, which hydrolyzes 8-oxo-dGTP into 8-oxo-dGMP. The changes in this defensive system have not yet been examined in failing hearts, in which the generation of ROS increases. Methods and Results - Myocardial infarction (MI) was created in mice by ligating the left coronary artery. Four weeks later, the left ventricle was dilated and contractility was diminished on echocardiography. The generation of ROS, as measured by electron spin resonance spectroscopy with 4-hydroxy-2,2,6,6-tetramethyl-piperidine-N-oxyl, increased in the noninfarcted left ventricle from MI mice. The formation of thiobarbituric acid-reactive substances also increased in the mitochondria from MI mice. 8-Oxo-dGTPase was detected in the mitochondrial fractions isolated from MI mice using a Western blot analysis with an antibody to its human homologue (hMTH1). Immunohistochemistry showed positive staining for hMTH1 was localized in the cardiac myocytes. Conclusions - The level of 8-oxo-dGTPase increased in the mitochondria isolated from post-MI hearts as oxidative stress increased, thus suggesting that a preventive mechanism is activated against ROS-induced DNA damage. As a result, 8-oxo-dGTPase is considered a useful marker of mitochondrial oxidative stress in heart failure.
AB - Background - Reactive oxygen species (ROS) can cause an oxidative modification of nucleotides, such as 8-oxo-7,8-dihydrodeoxyguanosine triphosphate (8-oxo-dGTP), which can lead to defects in DNA replication. The misincorporation of 8-oxo-dGTP into DNA is prevented by 8-oxo-dGTPase, which hydrolyzes 8-oxo-dGTP into 8-oxo-dGMP. The changes in this defensive system have not yet been examined in failing hearts, in which the generation of ROS increases. Methods and Results - Myocardial infarction (MI) was created in mice by ligating the left coronary artery. Four weeks later, the left ventricle was dilated and contractility was diminished on echocardiography. The generation of ROS, as measured by electron spin resonance spectroscopy with 4-hydroxy-2,2,6,6-tetramethyl-piperidine-N-oxyl, increased in the noninfarcted left ventricle from MI mice. The formation of thiobarbituric acid-reactive substances also increased in the mitochondria from MI mice. 8-Oxo-dGTPase was detected in the mitochondrial fractions isolated from MI mice using a Western blot analysis with an antibody to its human homologue (hMTH1). Immunohistochemistry showed positive staining for hMTH1 was localized in the cardiac myocytes. Conclusions - The level of 8-oxo-dGTPase increased in the mitochondria isolated from post-MI hearts as oxidative stress increased, thus suggesting that a preventive mechanism is activated against ROS-induced DNA damage. As a result, 8-oxo-dGTPase is considered a useful marker of mitochondrial oxidative stress in heart failure.
UR - http://www.scopus.com/inward/record.url?scp=0035846652&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0035846652&partnerID=8YFLogxK
U2 - 10.1161/hc4901.101347
DO - 10.1161/hc4901.101347
M3 - Article
C2 - 11739300
AN - SCOPUS:0035846652
SN - 0009-7322
VL - 104
SP - 2883
EP - 2885
JO - Circulation
JF - Circulation
IS - 24
ER -