A 60-GHz on-chip tapered slot Vivaldi antenna with improved radiation characteristics

Anwer S.Abd El-Hameed, Nessim Mahmoud, Adel Barakat, Adel B. Abdel-Rahman, Ahmed Allam, Ramesh K. Pokharel

Research output: Chapter in Book/Report/Conference proceedingConference contribution

7 Citations (Scopus)

Abstract

This paper presents a design of 60-GHz exponential tapered slot Vivaldi antenna-on-chip (AOC). The antenna is designed using standard 0.18μm six metal-layers CMOS technology. A double-Y balun feeding structure is used to make transition from coplanar waveguide to slot-line. Two techniques are investigated for improving antenna radiation properties. The first technique incorporates equal corrugations on the edges of exponential flaring section and other on the backed-edge of antenna to enhance the antenna gain. Second, a planar arc reflector is constructed using metal vias between M6 and M1 to inhibit the back lobe, contributing to the enhancement of gain and efficiency. The overall antenna size is compact and equal to 785μm×930μm. The influence of the antenna position on the radiation properties is also studied. The proposed antenna offers endfire radiation pattern with a simulated peak gain and a radiation efficiency of -0.4 dBi and 32%, respectively.

Original languageEnglish
Title of host publication2016 10th European Conference on Antennas and Propagation, EuCAP 2016
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9788890701863
DOIs
Publication statusPublished - May 31 2016
Event10th European Conference on Antennas and Propagation, EuCAP 2016 - Davos, Switzerland
Duration: Apr 10 2016Apr 15 2016

Publication series

Name2016 10th European Conference on Antennas and Propagation, EuCAP 2016

Other

Other10th European Conference on Antennas and Propagation, EuCAP 2016
Country/TerritorySwitzerland
CityDavos
Period4/10/164/15/16

All Science Journal Classification (ASJC) codes

  • Radiation
  • Computer Networks and Communications
  • Instrumentation

Fingerprint

Dive into the research topics of 'A 60-GHz on-chip tapered slot Vivaldi antenna with improved radiation characteristics'. Together they form a unique fingerprint.

Cite this