A coupling method for a cardiovascular simulation model which includes the Kalman Filter

Yuki Hasegawa, Takao Shimayoshi, Akira Amano, Tetsuya Matsuda

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)

Abstract

Multi-scale models of the cardiovascular system provide new insight that was unavailable with in vivo and in vitro experiments. For the cardiovascular system, multi-scale simulations provide a valuable perspective in analyzing the interaction of three phenomenons occurring at different spatial scales: circulatory hemodynamics, ventricular structural dynamics, and myocardial excitation-contraction. In order to simulate these interactions, multiscale cardiovascular simulation systems couple models that simulate different phenomena. However, coupling methods require a significant amount of calculation, since a system of non-linear equations must be solved for each timestep. Therefore, we proposed a coupling method which decreases the amount of calculation by using the Kalman filter. In our method, the Kalman filter calculates approximations for the solution to the system of non-linear equations at each timestep. The approximations are then used as initial values for solving the system of non-linear equations. The proposed method decreases the number of iterations required by 94.0% compared to the conventional strong coupling method. When compared with a smoothing spline predictor, the proposed method required 49.4% fewer iterations.

Original languageEnglish
Title of host publication2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2012
Pages1222-1225
Number of pages4
DOIs
Publication statusPublished - Dec 14 2012
Externally publishedYes
Event34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2012 - San Diego, CA, United States
Duration: Aug 28 2012Sep 1 2012

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (Print)1557-170X

Other

Other34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2012
CountryUnited States
CitySan Diego, CA
Period8/28/129/1/12

All Science Journal Classification (ASJC) codes

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint Dive into the research topics of 'A coupling method for a cardiovascular simulation model which includes the Kalman Filter'. Together they form a unique fingerprint.

Cite this