A global synthesis on the effects of thinning on hydrological processes: Implications for forest management

Antonio D. del Campo, Kyoichi Otsuki, Yusuf Serengil, Juan A. Blanco, Rasoul Yousefpour, Xiaohua Wei

Research output: Contribution to journalReview articlepeer-review

Abstract

Forest thinning can significantly affect hydrological processes. However, these effects largely vary with forest types, climate, thinning intensity, and hydrological variables of interest. Understanding these effects and their variations can significantly support thinning treatments' design and selection to ensure desired hydrological benefits. In this global-level review paper, we report the first comprehensive meta-analysis on the effects of thinning on major hydrological processes with an emphasis on rainfall partitioning, soil moisture and evapotranspiration processes. The synthesized and reviewed studies encompass different biophysical conditions (climate and forest ecosystems), silvicultural systems, and time scales (from weeks to decades) across continents. The results showed a significant increase in net precipitation, soil moisture and tree-level water use after thinning (the effect sizes are 1.19, 1.14 and 1.56 relative to the value of the control, respectively), while decreases in stemflow and transpiration (the effect sizes of 0.42 and 0.6 relative to the value of the control, respectively). Thinning intensity of about 50% of the stand density is determined as the threshold at or over which hydrological processes are significantly affected. The duration of thinning effect can be set between 2.6 and 4.3 (throughfall) and 3.1–8.6 years (soil moisture and transpiration), asking for repeated thinning in order to effectively sustain these effects. These global averages can serve as benchmarks for assessment and comparisons, but the effects of thinning depend on local biophysical conditions and thinning treatments. The literature review on the rest of the studied hydrological variables suggests that thinning generally enhance runoff to increase water yield and groundwater recharge. Thinning can also have a positive or limited role in water use efficiency (WUE), but it mitigates the effects of drought through increasing WUE. Moderate adverse effects on water quality can be prevented by adequate forest managements to prevent soil degradation. Nevertheless, more researches at relatively less studied regions are needed to support a more robust analysis of these reviewed hydrological variables. The management implications of the synthesized and reviewed results are suggested and discussed within the context of climate change.

Original languageEnglish
Article number120324
JournalForest Ecology and Management
Volume519
DOIs
Publication statusPublished - Sep 1 2022

All Science Journal Classification (ASJC) codes

  • Forestry
  • Nature and Landscape Conservation
  • Management, Monitoring, Policy and Law

Fingerprint

Dive into the research topics of 'A global synthesis on the effects of thinning on hydrological processes: Implications for forest management'. Together they form a unique fingerprint.

Cite this