A High PAE Stacked K-band Power Amplifier Using π-Phase Compensation Technique

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

A three-Tunable low-pass π-phase compensator technique is proposed and employed in a K-band CMOS power amplifier (PA) to solve the phase shift problem at intermediate nodes of stacked transistor configurations (STCs). Also, it reduces the effects of harmonic signals that in turns, enhances the overall power added efficiency (PAE) of the PA. The PA consists of two stages i.e. driver and main stages, designed using 2-STCs in 180-nm CMOS technology. The fabricated PA achieved a power gain of 12.8 dB at 23 GHz, a maximum PAE of 18.3%, an output power of 1 dB compression point \left(\mathrm{P}{1 \mathrm{~dB}}\right) of 14.1 1 dBm, and saturated output power \left(\mathrm{P}{\text {sat }}\right) of 16.0 dBm while it consumes chip area of 0.604 mm2 including pads.

Original languageEnglish
Title of host publicationRFIT 2022 - 2022 IEEE International Symposium on Radio-Frequency Integration Technology
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages42-44
Number of pages3
ISBN (Electronic)9781665466493
DOIs
Publication statusPublished - 2022
Event2022 IEEE International Symposium on Radio-Frequency Integration Technology, RFIT 2022 - Busan, Korea, Republic of
Duration: Aug 29 2022Aug 31 2022

Publication series

NameRFIT 2022 - 2022 IEEE International Symposium on Radio-Frequency Integration Technology

Conference

Conference2022 IEEE International Symposium on Radio-Frequency Integration Technology, RFIT 2022
Country/TerritoryKorea, Republic of
CityBusan
Period8/29/228/31/22

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Hardware and Architecture
  • Signal Processing
  • Electrical and Electronic Engineering
  • Instrumentation

Fingerprint

Dive into the research topics of 'A High PAE Stacked K-band Power Amplifier Using π-Phase Compensation Technique'. Together they form a unique fingerprint.

Cite this