A Histone deacetylase inhibitor suppresses epithelial-mesenchymal transition and attenuates chemoresistance in biliary tract cancer

Takuya Sakamoto, Shogo Kobayashi, Daisaku Yamada, Hiroaki Nagano, Akira Tomokuni, Yoshito Tomimaru, Takehiro Noda, Kunihito Gotoh, Tadafumi Asaoka, Hiroshi Wada, Koichi Kawamoto, Shigeru Marubashi, Hidetoshi Eguchi, Yuichiro Doki, Masaki Mori

Research output: Contribution to journalArticle

27 Citations (Scopus)

Abstract

Epithelial-mesenchymal transition (EMT) is involved in the characteristics of malignancy, such as invasion, metastasis, and chemoresistance. In biliary tract cancer (BTC), EMT is induced by transforming growth factor-beta 1 (TGF-β1). The EMT is reversible; therefore, it is conceivable that it could be related to some epigenetic changes. We focused on histone deacetylase (HDAC) inhibitors as regulators of TGF-β1 signaling, and investigated their effect on EMT and chemoresistance. We employed four BTC cell lines (MzChA-1, gemcitabine- resistant MzChA-1, TFK-1, and gemcitabine-resistant TFK-1) and used vorinostat as the HDAC inhibitor. The relative mRNA expression of an epithelial marker (CDH1) and mesenchymal markers (CDH2, vimentin, SNAI1) were measured by qRT-PCR to evaluate factors associated with EMT. MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was performed to evaluate the chemoresistance of each cell line. In addition, NOD/SCID mice were used to evaluate the effect of vorinostat in vivo. In the parent MzChA-1 and TFK-1 cell lines, TGF-β1 induced EMT and chemoresistance; while vorinostat inhibited the EMT and chemoresistance induced by TGF-β1. In gemcitabine-resistant cell lines that highly expressed TGF-β1, vorinostat inhibited EMT and attenuated chemoresistance. We showed that vorinostat inhibits nuclear translocation of SMAD4 which is a signaling factor of TGF-β1, and this is one of the mechanisms by which vorinostat regulates EMT. We also showed that vorinostat attenuates the binding affinity of SMAD4 to the CDH1-related transcription factors SNAI1, SNAI2, ZEB1, ZEB2, and TWIST. Furthermore, combination therapy with vorinostat and gemcitabine improved survival time in the mice xenografted with gemcitabine resistant MzChA-1 cells. In conclusion, vorinostat regulated TGF-β1-induced EMT and chemoresistance through inhibition of SMAD4 nuclear translocation.

Original languageEnglish
Article numbere0145985
JournalPloS one
Volume11
Issue number1
DOIs
Publication statusPublished - Jan 4 2016

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • General

Cite this