A human forearm and wrist motion assist exoskeleton robot with EMG-based fuzzy-neuro control

R. A.R.C. Gopura, Kazuo Kiguchi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

29 Citations (Scopus)

Abstract

In this paper, an EMG-based fuzzy-neuro control method is proposed for a three degree of freedom (3 DOF) human forearm and wrist motion assist exoskeleton robot (W-EXOS). The W-EXOS assists human forearm pronation/supination motion, wrist flexion/extension motion and ulnar/radial deviation. The paper presents the EMG-based fuzzyneuro control method with multiple fuzzy-neuro controllers and the adaptation method of controllers. The skin surface electromyography (EMG) signals of muscles in forearm of the exoskeleton users' and the hand force/forearm torque are used as input information for the controllers. Fuzzy-neuro control method, which is a combination of flexible fuzzy control and adaptive neural network control, has been applied to realize the natural and flexible motion assist. In the control method, multiple fuzzy-neuro controllers are applied, since the muscles activation levels change in accordance with the angles of motions. The control method is able to adapt according the changing EMG signal levels of different users. Experiments have been performed to evaluate the proposed EMG-based fuzzy-neuro control method.

Original languageEnglish
Title of host publicationProceedings of the 2nd Biennial IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob 2008
Pages550-555
Number of pages6
DOIs
Publication statusPublished - Dec 1 2008
Externally publishedYes
Event2nd Biennial IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob 2008 - Scottsdale, AZ, United States
Duration: Oct 19 2008Oct 22 2008

Publication series

NameProceedings of the 2nd Biennial IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob 2008

Other

Other2nd Biennial IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob 2008
Country/TerritoryUnited States
CityScottsdale, AZ
Period10/19/0810/22/08

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence
  • Computer Vision and Pattern Recognition
  • Biomedical Engineering

Fingerprint

Dive into the research topics of 'A human forearm and wrist motion assist exoskeleton robot with EMG-based fuzzy-neuro control'. Together they form a unique fingerprint.

Cite this