A log-Sobolev type inequality for free entropy of two projections

Fumio Hiai, Yoshimichi Ueda

Research output: Contribution to journalArticle

8 Citations (Scopus)

Abstract

We prove a kind of logarithmic Sobolev inequality claiming that the mutual free Fisher information dominates the microstate free entropy adapted to projections in the case of two projections.

Original languageEnglish
Pages (from-to)239-249
Number of pages11
JournalAnnales de l'institut Henri Poincare (B) Probability and Statistics
Volume45
Issue number1
DOIs
Publication statusPublished - Feb 1 2009

Fingerprint

Free Entropy
Projection
Logarithmic Sobolev Inequality
Fisher Information
Entropy
Microstates
Fisher information

All Science Journal Classification (ASJC) codes

  • Statistics and Probability
  • Statistics, Probability and Uncertainty

Cite this

A log-Sobolev type inequality for free entropy of two projections. / Hiai, Fumio; Ueda, Yoshimichi.

In: Annales de l'institut Henri Poincare (B) Probability and Statistics, Vol. 45, No. 1, 01.02.2009, p. 239-249.

Research output: Contribution to journalArticle

@article{a540fbc35f1142a09f18978a0c89772a,
title = "A log-Sobolev type inequality for free entropy of two projections",
abstract = "We prove a kind of logarithmic Sobolev inequality claiming that the mutual free Fisher information dominates the microstate free entropy adapted to projections in the case of two projections.",
author = "Fumio Hiai and Yoshimichi Ueda",
year = "2009",
month = "2",
day = "1",
doi = "10.1214/08-AIHP164",
language = "English",
volume = "45",
pages = "239--249",
journal = "Annales de l'institut Henri Poincare (B) Probability and Statistics",
issn = "0246-0203",
publisher = "Institute of Mathematical Statistics",
number = "1",

}

TY - JOUR

T1 - A log-Sobolev type inequality for free entropy of two projections

AU - Hiai, Fumio

AU - Ueda, Yoshimichi

PY - 2009/2/1

Y1 - 2009/2/1

N2 - We prove a kind of logarithmic Sobolev inequality claiming that the mutual free Fisher information dominates the microstate free entropy adapted to projections in the case of two projections.

AB - We prove a kind of logarithmic Sobolev inequality claiming that the mutual free Fisher information dominates the microstate free entropy adapted to projections in the case of two projections.

UR - http://www.scopus.com/inward/record.url?scp=77952080991&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=77952080991&partnerID=8YFLogxK

U2 - 10.1214/08-AIHP164

DO - 10.1214/08-AIHP164

M3 - Article

AN - SCOPUS:77952080991

VL - 45

SP - 239

EP - 249

JO - Annales de l'institut Henri Poincare (B) Probability and Statistics

JF - Annales de l'institut Henri Poincare (B) Probability and Statistics

SN - 0246-0203

IS - 1

ER -