A Magnetic Design Method Considering DC-Biased Magnetization for Integrated Magnetic Components Used in Multiphase Boost Converters

Jun Imaoka, Kenkichiro Okamoto, Shota Kimura, Mostafa Noah, Wilmar Martinez, Masayoshi Yamamoto, Masahito Shoyama

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)

Abstract

High power density and high efficiency in dc/dc converters are required in various applications such as the automotive application. Interleaved multiphase circuits with integrated magnetic components can fulfill these requirements because passive components occupying significant space in power converters can be downsized without high-switching frequency driving of power devices. However, dc-biased magnetization is a drawback of integrated magnetic components because of unbalanced inductor average currents. This imbalance arises from the tolerance among the phase components. To overcome this problem, inductor average current control is implemented in interleaved multiphase dc/dc converters. Nevertheless, the imbalance cannot be completely eliminated because the current sensors inserted into each phase have gain errors. The purpose of this paper is to present a magnetic design method to improve the immunity to unbalanced currents. A comprehensive analysis is carried out with two main objectives: to prevent magnetic saturation, which may arise due to the current unbalance and to downsize the magnetic components by selecting the optimal coupling coefficient taking into consideration the maximum permissible percentage of unbalanced currents. Simulation case studies are presented to support the analysis. Finally, a 1-kW prototype of the interleaved boost converter is built to validate the accuracy of the design method.

Original languageEnglish
Article number7932878
Pages (from-to)3346-3362
Number of pages17
JournalIEEE Transactions on Power Electronics
Volume33
Issue number4
DOIs
Publication statusPublished - Apr 2018

All Science Journal Classification (ASJC) codes

  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'A Magnetic Design Method Considering DC-Biased Magnetization for Integrated Magnetic Components Used in Multiphase Boost Converters'. Together they form a unique fingerprint.

Cite this