TY - JOUR
T1 - A multi-mode-driven molecular shuttle
T2 - Photochemically and thermally reactive azobenzene rotaxanes
AU - Murakami, Hiroto
AU - Kawabuchi, Atsushi
AU - Matsumoto, Rika
AU - Ido, Takeshi
AU - Nakashima, Naotoshi
PY - 2005/11/16
Y1 - 2005/11/16
N2 - The shuttling process of α-CyD in three rotaxanes (1-3) containing α-cyclodextrin (α-CyD) as a ring, azobenzene as a photoactive group, viologen as an energy barrier for slipping of the ring, and 2,4-dinitrobenzene as a stopper was investigated. The trans-cis photoisomerization of 1 by UV light irradiation occurred in both DMSO and water due to the movement of α-CyD toward the ethylene group, while the photoisomerization of 2 occurred in DMSO, but not in water. No photoisomerization was observed for 3 in both water and DMSO. The activation parameters of 1 and 1-ref in DMSO are subject to a compensation relation between ΔS‡ and ΔH‡; however, in water, the ΔS‡ terms are not compensated by the ΔH‡ terms. Alternating irradiation of the UV and visible lights resulted in a reversible change in the induced circular dichroism (ICD) bands of trans-1 and cis-1. In contrast, after the UV light irradiation, the ICD band of trans-2 decreased without the appearance of any bands of c/s-2. The NMR spectra of 2 in DMSO showed coalescence of the split signals for the methylene and for the viologen protons due to the shuttling of α-CyD. Both the NOE differential spectra for cis-1 in water after UV light irradiation and 2 in DMSO after heating to 120 °C showed the negative NOE peaks assigned to interior protons of α-CyD, suggesting that α-CyD in cis-1 exists at the one ethylene moiety, and α-CyDs in cis-2 and 2 heated in DMSO exist at the propylene moieties.
AB - The shuttling process of α-CyD in three rotaxanes (1-3) containing α-cyclodextrin (α-CyD) as a ring, azobenzene as a photoactive group, viologen as an energy barrier for slipping of the ring, and 2,4-dinitrobenzene as a stopper was investigated. The trans-cis photoisomerization of 1 by UV light irradiation occurred in both DMSO and water due to the movement of α-CyD toward the ethylene group, while the photoisomerization of 2 occurred in DMSO, but not in water. No photoisomerization was observed for 3 in both water and DMSO. The activation parameters of 1 and 1-ref in DMSO are subject to a compensation relation between ΔS‡ and ΔH‡; however, in water, the ΔS‡ terms are not compensated by the ΔH‡ terms. Alternating irradiation of the UV and visible lights resulted in a reversible change in the induced circular dichroism (ICD) bands of trans-1 and cis-1. In contrast, after the UV light irradiation, the ICD band of trans-2 decreased without the appearance of any bands of c/s-2. The NMR spectra of 2 in DMSO showed coalescence of the split signals for the methylene and for the viologen protons due to the shuttling of α-CyD. Both the NOE differential spectra for cis-1 in water after UV light irradiation and 2 in DMSO after heating to 120 °C showed the negative NOE peaks assigned to interior protons of α-CyD, suggesting that α-CyD in cis-1 exists at the one ethylene moiety, and α-CyDs in cis-2 and 2 heated in DMSO exist at the propylene moieties.
UR - http://www.scopus.com/inward/record.url?scp=27844551189&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=27844551189&partnerID=8YFLogxK
U2 - 10.1021/ja053690l
DO - 10.1021/ja053690l
M3 - Article
C2 - 16277532
AN - SCOPUS:27844551189
SN - 0002-7863
VL - 127
SP - 15891
EP - 15899
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 45
ER -