A multipotent clonal human periodontal ligament cell line with neural crest cell phenotypes promotes neurocytic differentiation, migration, and survival

Atsushi Tomokiyo, Hidefumi Maeda, Shinsuke Fujii, Satoshi Monnouchi, Naohisa Wada, Kiyomi Kono, Naohide Yamamoto, Katsuaki Koori, Yoko Teramatsu, Akifumi Akamine

Research output: Contribution to journalArticlepeer-review

32 Citations (Scopus)

Abstract

Repair of injured peripheral nerve is thought to play important roles in tissue homeostasis and regeneration. Recent experiments have demonstrated enhanced functional recovery of damaged neurons by some types of somatic stem cells. It remains unclear, however, if periodontal ligament (PDL) stem cells possess such functions. We recently developed a multipotent clonal human PDL cell line, termed cell line 1-17. Here, we investigated the effects of this cell line on neurocytic differentiation, migration, and survival. This cell line expressed the neural crest cell marker genes Slug, SOX10, Nestin, p75NTR, and CD49d and mesenchymal stem cell-related markers CD13, CD29, CD44, CD71, CD90, CD105, and CD166. Rat adrenal pheochromocytoma cells (PC12 cells) underwent neurocytic differentiation when co-cultured with cell line 1-17 or in conditioned medium from cell line 1-17 (1-17CM). ELISA analysis revealed that 1-17CM contained approximately 50pg/ml nerve growth factor (NGF). Cell line 1-17-induced migration of PC12 cells, which was inhibited by a neutralizing antibody against NGF. Furthermore, 1-17CM exerted antiapoptotic effects on differentiated PC12 cells as evidenced by inhibition of neurite retraction, reduction in annexin V and caspase-3/7 staining, and induction of Bcl-2 and Bcl-xL mRNA expression. Thus, cell line 1-17 promoted neurocytic differentiation, migration, and survival through secretion of NGF and possibly synergistic factors. PDL stem cells may play a role in peripheral nerve reinnervation during PDL regeneration.

Original languageEnglish
Pages (from-to)2040-2050
Number of pages11
JournalJournal of cellular physiology
Volume227
Issue number5
DOIs
Publication statusPublished - May 2012

All Science Journal Classification (ASJC) codes

  • Physiology
  • Clinical Biochemistry
  • Cell Biology

Fingerprint

Dive into the research topics of 'A multipotent clonal human periodontal ligament cell line with neural crest cell phenotypes promotes neurocytic differentiation, migration, and survival'. Together they form a unique fingerprint.

Cite this