A new approach toward power output enhancement using multirotor systems with shrouded wind turbines

Ohya Yuji, Watanabe Koichi

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

A multirotor system (MRS) is defined as containing more than one rotor in a single structure. MRSs have a great potential as a wind turbine system, saving mass and cost, and showing scale ability. The shrouded wind turbine with brimmed diffuser-augmented wind turbines (B-DAWT) has demonstrated power augmentation for a given turbine diameter and wind speed by a factor of about 2-5 compared with a bare wind turbine. In the present research, B-DAWTs are used in a multirotor system. The power output performance of MRSs using two and three B-DAWTs in a variety of configurations has been investigated in the previous works. In the present study, the aerodynamics of an MRS with five B-DAWTs, spaced in close vicinity in the same vertical plane normal to a uniform flow, has been analyzed. Power output increases of up to 21% in average for a five-rotor MRS configuration are achieved in comparison to that for the stand-alone configuration. Thus, when B-DAWTs are employed as the unit of a MRS, the total power output is remarkably increased. As the number of units for an MRS is increased from two to five, the increase in power output becomes larger and larger. This is because that the gap flows between B-DAWTs in a MRS are accelerated and cause lowered pressure regions due to vortex interaction behind the brimmed diffusers. Thus, a MRS with more B-DAWTs can draw more wind into turbines showing higher power output.

Original languageEnglish
Article number051203
JournalJournal of Energy Resources Technology, Transactions of the ASME
Volume141
Issue number5
DOIs
Publication statusPublished - May 1 2019

Fingerprint

wind turbine
Wind turbines
turbine
Rotors
aerodynamics
vortex
Aerodynamics
Vortex flow
Turbines
wind velocity
cost
Costs

All Science Journal Classification (ASJC) codes

  • Renewable Energy, Sustainability and the Environment
  • Fuel Technology
  • Energy Engineering and Power Technology
  • Mechanical Engineering
  • Geochemistry and Petrology

Cite this

@article{47588264f99d4e25903ba90d6a8efe1c,
title = "A new approach toward power output enhancement using multirotor systems with shrouded wind turbines",
abstract = "A multirotor system (MRS) is defined as containing more than one rotor in a single structure. MRSs have a great potential as a wind turbine system, saving mass and cost, and showing scale ability. The shrouded wind turbine with brimmed diffuser-augmented wind turbines (B-DAWT) has demonstrated power augmentation for a given turbine diameter and wind speed by a factor of about 2-5 compared with a bare wind turbine. In the present research, B-DAWTs are used in a multirotor system. The power output performance of MRSs using two and three B-DAWTs in a variety of configurations has been investigated in the previous works. In the present study, the aerodynamics of an MRS with five B-DAWTs, spaced in close vicinity in the same vertical plane normal to a uniform flow, has been analyzed. Power output increases of up to 21{\%} in average for a five-rotor MRS configuration are achieved in comparison to that for the stand-alone configuration. Thus, when B-DAWTs are employed as the unit of a MRS, the total power output is remarkably increased. As the number of units for an MRS is increased from two to five, the increase in power output becomes larger and larger. This is because that the gap flows between B-DAWTs in a MRS are accelerated and cause lowered pressure regions due to vortex interaction behind the brimmed diffusers. Thus, a MRS with more B-DAWTs can draw more wind into turbines showing higher power output.",
author = "Ohya Yuji and Watanabe Koichi",
year = "2019",
month = "5",
day = "1",
doi = "10.1115/1.4042235",
language = "English",
volume = "141",
journal = "Journal of Energy Resources Technology, Transactions of the ASME",
issn = "0195-0738",
publisher = "American Society of Mechanical Engineers(ASME)",
number = "5",

}

TY - JOUR

T1 - A new approach toward power output enhancement using multirotor systems with shrouded wind turbines

AU - Yuji, Ohya

AU - Koichi, Watanabe

PY - 2019/5/1

Y1 - 2019/5/1

N2 - A multirotor system (MRS) is defined as containing more than one rotor in a single structure. MRSs have a great potential as a wind turbine system, saving mass and cost, and showing scale ability. The shrouded wind turbine with brimmed diffuser-augmented wind turbines (B-DAWT) has demonstrated power augmentation for a given turbine diameter and wind speed by a factor of about 2-5 compared with a bare wind turbine. In the present research, B-DAWTs are used in a multirotor system. The power output performance of MRSs using two and three B-DAWTs in a variety of configurations has been investigated in the previous works. In the present study, the aerodynamics of an MRS with five B-DAWTs, spaced in close vicinity in the same vertical plane normal to a uniform flow, has been analyzed. Power output increases of up to 21% in average for a five-rotor MRS configuration are achieved in comparison to that for the stand-alone configuration. Thus, when B-DAWTs are employed as the unit of a MRS, the total power output is remarkably increased. As the number of units for an MRS is increased from two to five, the increase in power output becomes larger and larger. This is because that the gap flows between B-DAWTs in a MRS are accelerated and cause lowered pressure regions due to vortex interaction behind the brimmed diffusers. Thus, a MRS with more B-DAWTs can draw more wind into turbines showing higher power output.

AB - A multirotor system (MRS) is defined as containing more than one rotor in a single structure. MRSs have a great potential as a wind turbine system, saving mass and cost, and showing scale ability. The shrouded wind turbine with brimmed diffuser-augmented wind turbines (B-DAWT) has demonstrated power augmentation for a given turbine diameter and wind speed by a factor of about 2-5 compared with a bare wind turbine. In the present research, B-DAWTs are used in a multirotor system. The power output performance of MRSs using two and three B-DAWTs in a variety of configurations has been investigated in the previous works. In the present study, the aerodynamics of an MRS with five B-DAWTs, spaced in close vicinity in the same vertical plane normal to a uniform flow, has been analyzed. Power output increases of up to 21% in average for a five-rotor MRS configuration are achieved in comparison to that for the stand-alone configuration. Thus, when B-DAWTs are employed as the unit of a MRS, the total power output is remarkably increased. As the number of units for an MRS is increased from two to five, the increase in power output becomes larger and larger. This is because that the gap flows between B-DAWTs in a MRS are accelerated and cause lowered pressure regions due to vortex interaction behind the brimmed diffusers. Thus, a MRS with more B-DAWTs can draw more wind into turbines showing higher power output.

UR - http://www.scopus.com/inward/record.url?scp=85059982041&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85059982041&partnerID=8YFLogxK

U2 - 10.1115/1.4042235

DO - 10.1115/1.4042235

M3 - Article

AN - SCOPUS:85059982041

VL - 141

JO - Journal of Energy Resources Technology, Transactions of the ASME

JF - Journal of Energy Resources Technology, Transactions of the ASME

SN - 0195-0738

IS - 5

M1 - 051203

ER -