A new hand exoskeleton device for rehabilitation using a three-layered sliding spring mechanism

Jumpei Arata, Keiichi Ohmoto, Roger Gassert, Olivier Lambercy, Hideo Fujimoto, Ikuo Wada

Research output: Chapter in Book/Report/Conference proceedingConference contribution

88 Citations (Scopus)

Abstract

In this paper, a new hand exoskeleton device using a three-layered sliding spring mechanism is presented. In contrast to state of the art hand exoskeleton mechanisms (typically link, wire or pneumatically driven), the proposed mechanism is driven through large deformations of the compliant mechanism body. The mechanism can be made compact and lightweight by adequately positioning the compliant elements. In addition, the mechanism is designed to distribute 1-DOF actuated linear motion into three rotational motions of the finger joints, which translate into natural finger flexion/extension. The primary applicatoin of the proposed mechanism is to provide robotic support during physical therapy at the hospital (e.g. Continuous Passive Motion). However, thanks to its light and wearable structure, the proposed device could also be used at home as an assistive/therapeutic device to support activities of daily living. We introduce the mechanical structure of the three-layered sliding spring mechanism, present a prototype implementation as a hand exoskeleton device, and provide a preliminary evaluation.

Original languageEnglish
Title of host publication2013 IEEE International Conference on Robotics and Automation, ICRA 2013
Pages3902-3907
Number of pages6
DOIs
Publication statusPublished - 2013
Externally publishedYes
Event2013 IEEE International Conference on Robotics and Automation, ICRA 2013 - Karlsruhe, Germany
Duration: May 6 2013May 10 2013

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Other

Other2013 IEEE International Conference on Robotics and Automation, ICRA 2013
Country/TerritoryGermany
CityKarlsruhe
Period5/6/135/10/13

All Science Journal Classification (ASJC) codes

  • Software
  • Control and Systems Engineering
  • Artificial Intelligence
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'A new hand exoskeleton device for rehabilitation using a three-layered sliding spring mechanism'. Together they form a unique fingerprint.

Cite this