TY - JOUR
T1 - A novel role of Rho-kinase in the regulation of ligand-induced phosphorylated EGFR endocytosis via the early/late endocytic pathway in human fibrosarcoma cells
AU - Nishimura, Yukio
AU - Bereczky, Biborka
AU - Yoshioka, Kiyoko
AU - Taniguchi, Shun'Ichiro
AU - Itoh, Kazuyuki
PY - 2011/10
Y1 - 2011/10
N2 - The small GTPase RhoA and its downstream effectors, the Rho-associated kinase (Rho-kinase) family, are known to regulate cell morphology, motility, and tumor progression via the regulation of actin cytoskeleton rearrangement. In the present study, we evaluated the role of Rho-kinase in the intracellular endocytic trafficking of ligand-induced phosphorylated epidermal growth factor receptor (pEGFR). We investigated the time course of the internalization fate of EGF-induced pEGFR via the early/late endocytic pathway in human fibrosarcoma cell line HT1080 cells using Y-27632, a selective Rho-kinase inhibitor. We found, using confocal immunofluorescence microscopy and Western blot analysis, a large accumulation of pEGFR in the nuclei of HT1080 cells. In contrast, we observed decreased amounts of the pEGFR-positive staining in the nuclei along with an accumulation of cytosolic pEGFR staining when the cells were incubated for 15-30 min in the presence of Y-27632, implying that an aberrant endocytic trafficking mechanism of pEGFR occurs in HT1080 cells whereby pEGFR might be selectively translocated into the nucleus. Moreover, we demonstrated that after 15-min of stimulation with Texas Red-EGF, increasing numbers of pEGFR-positive staining that had colocalized with Texas Red-EGF-positive punctate staining were seen in the cytoplasm of HT1080 cells but after 30-min of stimulation, most of this staining had disappeared from the cytoplasm and a large accumulation of pEGFR-positive staining appeared in the nucleus. Thus, nuclear accumulation of pEGFR appears to occur in an EGF-dependent manner. In contrast, such nuclear pEGFR-positive staining was not seen in the Y-27632-treated cells. Furthermore, silencing of RhoA or Rho-kinases I/II by sequence specific siRNAs considerably inhibited the EGF-dependent nuclear accumulation of pEGFR. Collectively, these results provide the first evidence that Rho-kinase signaling pathway plays a suppressive role in the intracellular vesicle trafficking of pEGFR via the endocytic pathway and that an increased Rho-kinase activity leads to the attenuation of the normal endocytic vesicular traffic of pEGFR via the early/late endocytic pathway, instead causing pEGFR to be trafficked out of the endocytic vesicles into the nucleus.
AB - The small GTPase RhoA and its downstream effectors, the Rho-associated kinase (Rho-kinase) family, are known to regulate cell morphology, motility, and tumor progression via the regulation of actin cytoskeleton rearrangement. In the present study, we evaluated the role of Rho-kinase in the intracellular endocytic trafficking of ligand-induced phosphorylated epidermal growth factor receptor (pEGFR). We investigated the time course of the internalization fate of EGF-induced pEGFR via the early/late endocytic pathway in human fibrosarcoma cell line HT1080 cells using Y-27632, a selective Rho-kinase inhibitor. We found, using confocal immunofluorescence microscopy and Western blot analysis, a large accumulation of pEGFR in the nuclei of HT1080 cells. In contrast, we observed decreased amounts of the pEGFR-positive staining in the nuclei along with an accumulation of cytosolic pEGFR staining when the cells were incubated for 15-30 min in the presence of Y-27632, implying that an aberrant endocytic trafficking mechanism of pEGFR occurs in HT1080 cells whereby pEGFR might be selectively translocated into the nucleus. Moreover, we demonstrated that after 15-min of stimulation with Texas Red-EGF, increasing numbers of pEGFR-positive staining that had colocalized with Texas Red-EGF-positive punctate staining were seen in the cytoplasm of HT1080 cells but after 30-min of stimulation, most of this staining had disappeared from the cytoplasm and a large accumulation of pEGFR-positive staining appeared in the nucleus. Thus, nuclear accumulation of pEGFR appears to occur in an EGF-dependent manner. In contrast, such nuclear pEGFR-positive staining was not seen in the Y-27632-treated cells. Furthermore, silencing of RhoA or Rho-kinases I/II by sequence specific siRNAs considerably inhibited the EGF-dependent nuclear accumulation of pEGFR. Collectively, these results provide the first evidence that Rho-kinase signaling pathway plays a suppressive role in the intracellular vesicle trafficking of pEGFR via the endocytic pathway and that an increased Rho-kinase activity leads to the attenuation of the normal endocytic vesicular traffic of pEGFR via the early/late endocytic pathway, instead causing pEGFR to be trafficked out of the endocytic vesicles into the nucleus.
UR - http://www.scopus.com/inward/record.url?scp=80052699263&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=80052699263&partnerID=8YFLogxK
U2 - 10.1007/s10735-011-9348-0
DO - 10.1007/s10735-011-9348-0
M3 - Article
C2 - 21847509
AN - SCOPUS:80052699263
SN - 1567-2379
VL - 42
SP - 427
EP - 442
JO - Journal of Molecular Histology
JF - Journal of Molecular Histology
IS - 5
ER -