A novel zf-MYND protein, CHB-3, mediates guanylyl cyclase localization to sensory cilia and controls body size of Caenorhabditis elegans

Manabi Fujiwara, Takayuki Teramoto, Takeshi Ishihara, Yasumi Ohshima, Steven L. Mcintire

Research output: Contribution to journalArticle

11 Citations (Scopus)


Cilia are important sensory organelles, which are thought to be essential regulators of numerous signaling pathways. In Caenorhabditis elegans, defects in sensory cilium formation result in a small-body phenotype, suggesting the role of sensory cilia in body size determination. Previous analyses suggest that lack of normal cilia causes the small-body phenotype through the activation of a signaling pathway which consists of the EGL-4 cGMP-dependent protein kinase and the GCY-12 receptor-type guanylyl cyclase. By genetic suppressor screening of the small-body phenotype of a cilium defective mutant, we identified a chb-3 gene. Genetic analyses placed chb-3 in the same pathway as egl-4 and gcy-12 and upstream of egl-4. chb-3 encodes a novel protein, with a zf-MYND motif and ankyrin repeats, that is highly conserved from worm to human. In chb-3 mutants, GCY-12 guanylyl cyclase visualized by tagged GFP (GCY-12::GFP) fails to localize to sensory cilia properly and accumulates in cell bodies. Our analyses suggest that decreased GCY-12 levels in the cilia of chb-3 mutants may cause the suppression of the small-body phenotype of a cilium defective mutant. By observing the transport of GCY-12::GFP particles along the dendrites to the cilia in sensory neurons, we found that the velocities and the frequencies of the particle movement are decreased in chb-3 mutant animals. How membrane proteins are trafficked to cilia has been the focus of extensive studies in vertebrates and invertebrates, although only a few of the relevant proteins have been identified. Our study defines a new regulator, CHB-3, in the trafficking process and also shows the importance of ciliary targeting of the signaling molecule, GCY-12, in sensory-dependent body size regulation in C. elegans. Given that CHB-3 is highly conserved in mammal, a similar system may be used in the trafficking of signaling proteins to the cilia of other species.

Original languageEnglish
Article numbere1001211
JournalPLoS genetics
Issue number11
Publication statusPublished - Nov 1 2010


All Science Journal Classification (ASJC) codes

  • Ecology, Evolution, Behavior and Systematics
  • Molecular Biology
  • Genetics
  • Genetics(clinical)
  • Cancer Research

Cite this