A phase-change approach to landslide simulations: Coupling finite strain elastoplastic TLSPH with non-Newtonian IISPH

Daniel S. Morikawa, Mitsuteru Asai

Research output: Contribution to journalArticlepeer-review

Abstract

The present work shows a novel phase-change concept for simulating landslides using the smoothed particles hydrodynamics (SPH) method. The idea is to initiate the simulation of a slope stability problem with a Solid Mechanics-based SPH, modeling the soil as an elastoplastic material at finite strain. Next, if a particle exceeds a certain level of plastic strain, such particle changes its phase to a fluid state with non-Newtonian rheology, which is then solved with a Fluid Dynamics-based SPH method. We use the total Lagrangian SPH (TLSPH) method to solve the Solid Mechanics phase to avoid problems related to particle distribution (such as the tensile instability), while the implicit incompressible SPH (IISPH) to solve the Fluid Dynamics part to avoid the restriction on time increment in relation to high values of viscosity. The coupling between the two phases is treated as a conventional fluid–solid interaction (FSI) problem. We verified the proposed TLSPH method with the triaxial compression problem and demonstrated the robustness of the proposed phase-change TLSPH–IISPH coupled method in the simulation of the Aso landslide. Specifically, it may be the first time to simulate the Aso landslide from its initiation to its propagation in a single numerical simulation.

Original languageEnglish
Article number104815
JournalComputers and Geotechnics
Volume148
DOIs
Publication statusPublished - Aug 2022

All Science Journal Classification (ASJC) codes

  • Geotechnical Engineering and Engineering Geology
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'A phase-change approach to landslide simulations: Coupling finite strain elastoplastic TLSPH with non-Newtonian IISPH'. Together they form a unique fingerprint.

Cite this