TY - JOUR
T1 - A rice immunophilin homolog, osfkbp12, is a negative regulator of both biotic and abiotic stress responses
AU - Cheung, Ming Yan
AU - Auyeung, Wan Kin
AU - Li, Kwan Pok
AU - Lam, Hon Ming
N1 - Funding Information:
Funding: This research was funded by the Hong Kong Research Grants Council General Research Fund to H.-M.L., Grant Number 14122715.
Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2020/11/2
Y1 - 2020/11/2
N2 - A class of proteins that were discovered to bind the immunosuppressant drug FK506, called FK506-binding proteins (FKBPs), are members of a sub-family of immunophilins. Although they were first identified in human, FKBPs exist in all three domains of life. In this report, a rice FKBP12 homolog was first identified as a biotic stress-related gene through suppression subtractive hybridization screening. By ectopically expressing OsFKBP12 in the heterologous model plant system, Arabidopsis thaliana, for functional characterization, OsFKBP12 was found to increase susceptibility of the plant to the pathogen, Pseudomonas syringae pv. tomato DC3000 (Pst DC3000). This negative regulatory role of FKBP12 in biotic stress responses was also demonstrated in the AtFKBP12-knockout mutant, which exhibited higher resistance towards Pst DC3000. Furthermore, this higher-plant FKBP12 homolog was also shown to be a negative regulator of salt tolerance. Using yeast two-hybrid tests, an ancient unconventional G-protein, OsYchF1, was identified as an interacting partner of OsFKBP12. OsYchF1 was previously reported as a negative regulator of both biotic and abiotic stresses. Therefore, OsFKBP12 probably also plays negative regulatory roles at the convergence of biotic and abiotic stress response pathways in higher plants.
AB - A class of proteins that were discovered to bind the immunosuppressant drug FK506, called FK506-binding proteins (FKBPs), are members of a sub-family of immunophilins. Although they were first identified in human, FKBPs exist in all three domains of life. In this report, a rice FKBP12 homolog was first identified as a biotic stress-related gene through suppression subtractive hybridization screening. By ectopically expressing OsFKBP12 in the heterologous model plant system, Arabidopsis thaliana, for functional characterization, OsFKBP12 was found to increase susceptibility of the plant to the pathogen, Pseudomonas syringae pv. tomato DC3000 (Pst DC3000). This negative regulatory role of FKBP12 in biotic stress responses was also demonstrated in the AtFKBP12-knockout mutant, which exhibited higher resistance towards Pst DC3000. Furthermore, this higher-plant FKBP12 homolog was also shown to be a negative regulator of salt tolerance. Using yeast two-hybrid tests, an ancient unconventional G-protein, OsYchF1, was identified as an interacting partner of OsFKBP12. OsYchF1 was previously reported as a negative regulator of both biotic and abiotic stresses. Therefore, OsFKBP12 probably also plays negative regulatory roles at the convergence of biotic and abiotic stress response pathways in higher plants.
UR - http://www.scopus.com/inward/record.url?scp=85096330542&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85096330542&partnerID=8YFLogxK
U2 - 10.3390/ijms21228791
DO - 10.3390/ijms21228791
M3 - Article
C2 - 33233855
AN - SCOPUS:85096330542
SN - 1661-6596
VL - 21
SP - 1
EP - 17
JO - International Journal of Molecular Sciences
JF - International Journal of Molecular Sciences
IS - 22
M1 - 8791
ER -