A Second Order Ghost Fluid Method for an Interface Problem of the Poisson Equation

Cheng Liu, Changhong Hu

Research output: Contribution to journalArticlepeer-review

15 Citations (Scopus)


A second order Ghost Fluid method is proposed for the treatment of interface problems of elliptic equations with discontinuous coefficients. By appropriate use of auxiliary virtual points, physical jump conditions are enforced at the interface. The signed distance function is used for the implicit description of irregular domain. With the additional unknowns, high order approximation considering the discontinuity can be built. To avoid the ill-conditioned matrix, the interpolation stencils are selected adaptively to balance the accuracy and the numerical stability. Additional equations containing the jump restrictions are assembled with the original discretized algebraic equations to form a new sparse linear system. Several Krylov iterative solvers are tested for the newly derived linear system. The results of a series of 1-D, 2-D tests show that the proposed method possesses second order accuracy in L norm. Besides, the method can be extended to the 3-D problems straightforwardly. Numerical results reveal the present method is highly efficient and robust in dealing with the interface problems of elliptic equations.

Original languageEnglish
Pages (from-to)965-996
Number of pages32
JournalCommunications in Computational Physics
Issue number4
Publication statusPublished - Oct 1 2017

All Science Journal Classification (ASJC) codes

  • Physics and Astronomy (miscellaneous)


Dive into the research topics of 'A Second Order Ghost Fluid Method for an Interface Problem of the Poisson Equation'. Together they form a unique fingerprint.

Cite this