TY - JOUR
T1 - A simple SNP genotyping method reveals extreme invasions of non-native haplotypes in pale chub Opsariichthys platypus, a common cyprinid fish in Japan
AU - Kitanishi, Shigeru
AU - Onikura, Norio
AU - Mukai, Takahiko
N1 - Funding Information:
This study was supported by JSPS KAKENHI (https://www.jsps.go.jp/j-grantsinaid/) Grant Number 26250044 to Takahiko Mukai. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. There was no additional external funding received for this study. We are grateful to T. Shimizu for valuable comments on experiment. We also thank K. Ikeya, G. Ito and M. Suzuki for cooperation for sample collection. We would like to thank Dr. Hideyuki Doi and two anonymous reviewers for constructive comments on this manuscript.
Publisher Copyright:
© 2018 Kitanishi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2018/1
Y1 - 2018/1
N2 - Biological invasion by non-native subspecies or populations is one of the most serious threats to ecosystems, because these species might be easily established in the introduced area and can negatively affect native populations through competition and hybridization. Pale chub Opsariichthys platypus, one of the most common fish in East Asia, exhibits clear genetic differentiation among regional populations; however, introgression and subsequent loss of genetic integrity have been occurring throughout Japan due to the artificial introduction of non-native conspecifics. In this study, we developed a simple SNP genotyping method to discriminate between native and non-native mitochondrial DNA (mtDNA) haplotypes in pale chub using real-time PCR assay. We then investigated the distribution patterns of non-native pale chub in Tokai region, located in the center of Honshu Island, Japan and developed a predictive model of the occurrence of non-natives to reveal the factors influencing their invasion. The specificity and accuracy of the genotyping method were confirmed by using samples whose haplotypes were determined previously. Extensive occurrence of non-native haplotypes in Tokai region was detected by this method. In addition, our models suggested that the presence of non-natives varied greatly depending on the river system, and was positively influenced by the impounded water areas. Our method could accurately distinguish between native and non-native haplotypes of pale chub in Japan and suggested key environmental factors associated with the presence of non-natives. This approach can greatly reduce experimental costs be a great contribution for quantitative investigation.
AB - Biological invasion by non-native subspecies or populations is one of the most serious threats to ecosystems, because these species might be easily established in the introduced area and can negatively affect native populations through competition and hybridization. Pale chub Opsariichthys platypus, one of the most common fish in East Asia, exhibits clear genetic differentiation among regional populations; however, introgression and subsequent loss of genetic integrity have been occurring throughout Japan due to the artificial introduction of non-native conspecifics. In this study, we developed a simple SNP genotyping method to discriminate between native and non-native mitochondrial DNA (mtDNA) haplotypes in pale chub using real-time PCR assay. We then investigated the distribution patterns of non-native pale chub in Tokai region, located in the center of Honshu Island, Japan and developed a predictive model of the occurrence of non-natives to reveal the factors influencing their invasion. The specificity and accuracy of the genotyping method were confirmed by using samples whose haplotypes were determined previously. Extensive occurrence of non-native haplotypes in Tokai region was detected by this method. In addition, our models suggested that the presence of non-natives varied greatly depending on the river system, and was positively influenced by the impounded water areas. Our method could accurately distinguish between native and non-native haplotypes of pale chub in Japan and suggested key environmental factors associated with the presence of non-natives. This approach can greatly reduce experimental costs be a great contribution for quantitative investigation.
UR - http://www.scopus.com/inward/record.url?scp=85040963045&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85040963045&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0191731
DO - 10.1371/journal.pone.0191731
M3 - Article
C2 - 29360868
AN - SCOPUS:85040963045
SN - 1932-6203
VL - 13
JO - PLoS One
JF - PLoS One
IS - 1
M1 - e0191731
ER -