Abstract
Detailed analysis of oxygen consumption within the myocardial microcirculation is of importance to understand conditions under ischemic heart disease. However, there are currently difficulties in microscopically precise measurements of local oxygen consumptions in myocardial tissue. In this paper, a simulation model of myocardial microcirculation is proposed for analysis of local distribution of oxygen consumption. The proposed model is composed by integrating a theoretical spatially-distributed model of myocardial tissue and a detailed lumped-parameter model of normal cardiac myocyte. The proposed model was validated for an animal research in reproduction of a linear correlation between myocardial oxygen consumption and myocardial contractility. A simulation result of the model shows that local oxygen consumptions under low myocardial blood flow are spatially partitioned into an arteriolar-side normal area and a venular-side low area. Myocytes in the venular-side area lose normal activity under extremely low oxygen concentration. This result indicates the possibility that cardiac tissue is locally damaged under extreme hypoxia in the venular-side area even in case of a slight reduction of mean oxygen consumption of the myocadial tissue caused by decreased myocardial blood flow.
Original language | English |
---|---|
Pages (from-to) | 248-253 |
Number of pages | 6 |
Journal | Transactions of Japanese Society for Medical and Biological Engineering |
Volume | 51 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2013 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Biomedical Engineering