A strongly polynomial algorithm for finding a shortest non-zero path in group-labeled graphs

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We study a constrained shortest path problem in group-labeled graphs with nonnegative edge length, called the shortest non-zero path problem. Depending on the group in question, this problem includes two types of tractable variants in undirected graphs: one is the parity-constrained shortest path/cycle problem, and the other is computing a shortest noncontractible cycle in surface-embedded graphs. For the shortest non-zero path problem with respect to finite abelian groups, Kobayashi and Toyooka (2017) proposed a randomized, pseudopolynomial algorithm via permanent computation. For a slightly more general class of groups, Yamaguchi (2016) showed a reduction of the problem to the weighted linear matroid parity problem. In particular, some cases are solved in strongly polynomial time via the reduction with the aid of a deterministic, polynomial algorithm for the weighted linear matroid parity problem developed by Iwata and Kobayashi (2017), which generalizes a well-known fact that the parity-constrained shortest path problem is solved via weighted matching. In this paper, as the first general solution independent of the group, we present a rather simple, deterministic, and strongly polynomial algorithm for the shortest non-zero path problem. The algorithm is based on Dijkstra's algorithm for the unconstrained shortest path problem and Edmonds' blossom shrinking technique in matching algorithms, and clarifies a common tractable feature behind the parity and topological constraints in the shortest path/cycle problem.

Original languageEnglish
Title of host publication31st Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2020
EditorsShuchi Chawla
PublisherAssociation for Computing Machinery
Pages1923-1932
Number of pages10
ISBN (Electronic)9781611975994
Publication statusPublished - 2020
Event31st Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2020 - Salt Lake City, United States
Duration: Jan 5 2020Jan 8 2020

Publication series

NameProceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms
Volume2020-January

Conference

Conference31st Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2020
CountryUnited States
CitySalt Lake City
Period1/5/201/8/20

All Science Journal Classification (ASJC) codes

  • Software
  • Mathematics(all)

Fingerprint Dive into the research topics of 'A strongly polynomial algorithm for finding a shortest non-zero path in group-labeled graphs'. Together they form a unique fingerprint.

Cite this