A study of anthropogenic impacts of the radiation budget and the cloud field in East Asia based on model simulations with GCM

Makiko Mukai, Teruyuki Nakajima, Toshihiko Takemura

    Research output: Contribution to journalArticlepeer-review

    18 Citations (Scopus)

    Abstract

    We investigated the effects of man-made air pollutants on the climate of East Asia, focusing on eastern China where anthropogenic aerosol concentrations are rapidly increasing. The increasing emission of anthropogenic aerosols causes serious air pollution episodes and various effects on the climate in this region. It is therefore necessary to quantify the contribution of aerosols to the change in the radiation budget and the cloud field. Our purpose of this study is to evaluate the sensitivity of anthropogenic aerosols and other anthropogenic factors such as greenhouse gas (GHG) upon the radiative forcing. Then an aerosol transport model coupled to a general circulation model and an ocean mixed-layer model was used to investigate the relationships among the anthropogenic aerosol forcing, GHG forcing, surface radiation budget, and cloud field. Our simulation results showed that copious anthropogenic aerosol loading causes significant decrease in the surface downward shortwave radiation flux (SDSWRF), which indicates that a direct effect of aerosols has the greatest influence on the surface radiation. It is found from our model simulations that low-level clouds increase but convective clouds decrease due to reduced convective activity caused by surface cooling when anthropogenic aerosol increases, and GHG increase has an insignificant effect on SDSWRF but a significant effect on the cloud field. In other word model simulations suggested that the aerosol forcing mainly causes a reduction of SDSWRF, whereas the change in the cloud field is influenced both anthropogenic aerosol and GHG effects. Thus this work demonstrated with sensitivity experiments the importance of aerosols to cause significant climate effects in the East Asian region, though further study is needed because our study is based on results from one specific model and limited data analysis.

    Original languageEnglish
    Article numberD12211
    JournalJournal of Geophysical Research Atmospheres
    Volume113
    Issue number12
    DOIs
    Publication statusPublished - Jun 27 2008

    All Science Journal Classification (ASJC) codes

    • Geophysics
    • Forestry
    • Oceanography
    • Aquatic Science
    • Ecology
    • Water Science and Technology
    • Soil Science
    • Geochemistry and Petrology
    • Earth-Surface Processes
    • Atmospheric Science
    • Earth and Planetary Sciences (miscellaneous)
    • Space and Planetary Science
    • Palaeontology

    Fingerprint

    Dive into the research topics of 'A study of anthropogenic impacts of the radiation budget and the cloud field in East Asia based on model simulations with GCM'. Together they form a unique fingerprint.

    Cite this