TY - JOUR
T1 - Accumulation of p100, a precursor of NF-κB2, enhances osteoblastic differentiation in vitro and bone formation in vivo in alylaly mice
AU - Seo, Yoshinori
AU - Fukushima, Hidefumi
AU - Maruyama, Toshimasa
AU - Kuroishi, Kayoko Nakao
AU - Osawa, Kenji
AU - Nagano, Kenichi
AU - Aoki, Kazuhiro
AU - Weih, Falk
AU - Doi, Takahiro
AU - Zhang, Min
AU - Ohya, Keiichi
AU - Katagiri, Takenobu
AU - Hosokawa, Ryuji
AU - Jimi, Eijiro
N1 - Copyright:
Copyright 2012 Elsevier B.V., All rights reserved.
PY - 2012/3/1
Y1 - 2012/3/1
N2 - We previously reported that alymphoplasia (alylaly) mice, which have a natural loss-of-function mutation in the Nik gene, which encodes a kinase essential for the processing of p100 to p52 in the alternative nuclear factor-κB (NF-κB) pathway, show mild osteopetrosis with an increase in several parameters of bone formation: bone formation rate, mineral apposition rate, and osteoblast number. We therefore investigated the molecular mechanisms triggered by the alternative NF-κB pathway in the regulation of osteoblast differentiation using primary osteoblasts (POB) prepared from alylaly mice. Alkaline phosphatase (ALP) activity and mineralization induced by the presence of β-glycerophosphate and ascorbic acid were enhanced in POB from alylaly compared with wild-type (WT) mice. Furthermore, osteoblastic differentiation induced by bone morphogenetic protein 2 (BMP2), as shown by ALP activity, mRNA expression of osteocalcin, Id1, Osterix and Runx2, and Sma- and Mad-related protein (Smad)1/5/8 phosphorylation, was also enhanced in POB from alylaly mice. The ectopic bone formation in vivo that was induced by BMP2 was enhanced in alylaly mice compared with controls. Transfection of a mutant form of p100, p100ΔGRR, which cannot be processed to p52, stimulated ALP activity and Smad phosphorylation. In contrast to p100ΔGRR, overexpression of p52 inhibited these events. Both BMP2-induced ALP activity and Smad phosphorylation were reduced in POB from p100-deficient mice, which carry a homozygous deletion of the COOH-terminal ankyrin repeats of p100 but still express functional p52 protein. p52 and p100ΔGRR interacted with a BMP receptor, ALK2, in overexpressed COS7 cells and changed the ALK2 protein levels in opposite directions: p52 reduced ALK2 and p100 increased it. Thus, the alternative the NF-κB pathway via the processing of p52 from p100 negatively regulates osteoblastic differentiation and bone formation by modifying BMP activity.
AB - We previously reported that alymphoplasia (alylaly) mice, which have a natural loss-of-function mutation in the Nik gene, which encodes a kinase essential for the processing of p100 to p52 in the alternative nuclear factor-κB (NF-κB) pathway, show mild osteopetrosis with an increase in several parameters of bone formation: bone formation rate, mineral apposition rate, and osteoblast number. We therefore investigated the molecular mechanisms triggered by the alternative NF-κB pathway in the regulation of osteoblast differentiation using primary osteoblasts (POB) prepared from alylaly mice. Alkaline phosphatase (ALP) activity and mineralization induced by the presence of β-glycerophosphate and ascorbic acid were enhanced in POB from alylaly compared with wild-type (WT) mice. Furthermore, osteoblastic differentiation induced by bone morphogenetic protein 2 (BMP2), as shown by ALP activity, mRNA expression of osteocalcin, Id1, Osterix and Runx2, and Sma- and Mad-related protein (Smad)1/5/8 phosphorylation, was also enhanced in POB from alylaly mice. The ectopic bone formation in vivo that was induced by BMP2 was enhanced in alylaly mice compared with controls. Transfection of a mutant form of p100, p100ΔGRR, which cannot be processed to p52, stimulated ALP activity and Smad phosphorylation. In contrast to p100ΔGRR, overexpression of p52 inhibited these events. Both BMP2-induced ALP activity and Smad phosphorylation were reduced in POB from p100-deficient mice, which carry a homozygous deletion of the COOH-terminal ankyrin repeats of p100 but still express functional p52 protein. p52 and p100ΔGRR interacted with a BMP receptor, ALK2, in overexpressed COS7 cells and changed the ALK2 protein levels in opposite directions: p52 reduced ALK2 and p100 increased it. Thus, the alternative the NF-κB pathway via the processing of p52 from p100 negatively regulates osteoblastic differentiation and bone formation by modifying BMP activity.
UR - http://www.scopus.com/inward/record.url?scp=84863136975&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84863136975&partnerID=8YFLogxK
U2 - 10.1210/me.2011-1241
DO - 10.1210/me.2011-1241
M3 - Article
C2 - 22282470
AN - SCOPUS:84863136975
SN - 0888-8809
VL - 26
SP - 414
EP - 422
JO - Molecular Endocrinology
JF - Molecular Endocrinology
IS - 3
ER -