Accurate determination of the charge transfer efficiency of photoanodes for solar water splitting

Dino Klotz, Daniel A. Grave, Avner Rothschild

Research output: Contribution to journalArticlepeer-review

32 Citations (Scopus)

Abstract

The oxygen evolution reaction (OER) at the surface of semiconductor photoanodes is critical for photoelectrochemical water splitting. This reaction involves photo-generated holes that oxidize water via charge transfer at the photoanode/electrolyte interface. However, a certain fraction of the holes that reach the surface recombine with electrons from the conduction band, giving rise to the surface recombination loss. The charge transfer efficiency, ηt, defined as the ratio between the flux of holes that contribute to the water oxidation reaction and the total flux of holes that reach the surface, is an important parameter that helps to distinguish between bulk and surface recombination losses. However, accurate determination of ηt by conventional voltammetry measurements is complicated because only the total current is measured and it is difficult to discern between different contributions to the current. Chopped light measurement (CLM) and hole scavenger measurement (HSM) techniques are widely employed to determine ηt, but they often lead to errors resulting from instrumental as well as fundamental limitations. Intensity modulated photocurrent spectroscopy (IMPS) is better suited for accurate determination of ηt because it provides direct information on both the total photocurrent and the surface recombination current. However, careful analysis of IMPS measurements at different light intensities is required to account for nonlinear effects. This work compares the ηt values obtained by these methods using heteroepitaxial thin-film hematite photoanodes as a case study. We show that a wide spread of ηt values is obtained by different analysis methods, and even within the same method different values may be obtained depending on instrumental and experimental conditions such as the light source and light intensity. Statistical analysis of the results obtained for our model hematite photoanode show good correlation between different methods for measurements carried out with the same light source, light intensity and potential. However, there is a considerable spread in the results obtained by different methods. For accurate determination of ηt, we recommend IMPS measurements in operando with a bias light intensity such that the irradiance is as close as possible to the AM1.5 Global solar spectrum.

Original languageEnglish
Pages (from-to)20383-20392
Number of pages10
JournalPhysical Chemistry Chemical Physics
Volume19
Issue number31
DOIs
Publication statusPublished - 2017
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Physics and Astronomy(all)
  • Physical and Theoretical Chemistry

Fingerprint

Dive into the research topics of 'Accurate determination of the charge transfer efficiency of photoanodes for solar water splitting'. Together they form a unique fingerprint.

Cite this