Activation of intrinsic apoptosis and g1 cell cycle arrest by a triazole precursor, n-(4-chlorophenyl)-2-(4-(3,4,5-trimethoxybenzyloxy)benzoyl)-hydrazinecarbothioamide in breast cancer cell line

Stephanie B. Arulnathan, Kok H. Leong, Azhar Ariffin, Huda S. Kareem, Kevin K.H. Cheah

    Research output: Contribution to journalArticlepeer-review

    Abstract

    Background: Oxadiazoles, triazoles, and their respective precursors have been shown to exhibit various pharmacological properties, namely antitumour activities. Cytotoxic activity was reported for these compounds in various cancer cell lines. Aim and Objectives: In this study, we aim at investigating the mechanism of apoptosis by N-(4-chlorophenyl)-2-(4-(3,4,5-trimethoxybenzyloxy)benzoyl)-hydrazinecarbothioamide, a triazole precursor, henceforth termed compound P7a, in breast cancer cell line, MCF-7. We first screen a series of analogues containing (3,4,5-trimethoxybenzyloxy) phenyl moiety in breast cancer cell lines (MCF-7 and MDA-MB-231) to select the most cytotoxic compound and demonstrate a dose-and time-dependent cytotoxicity. Then, we unravel the mechanism of apoptosis of P7a in MCF-7 as well as its ability to cause cell cycle arrest. Methods: Synthesis was performed as previously described by Kareem and co-workers. Cytotoxicity of analogues containing (3,4,5-trimethoxybenzyloxy)phenyl moiety against MCF-7 and MDA-MB-231 cell lines was evaluated using the MTS assay. Flow cytometric analyses was done using Annexin V/PI staining, JC-1 staining and ROS assay. The activity of caspases using a chemoluminescence assay and western blot analysis was conducted to study the apoptotic pathway induced by the compound in MCF-7 cells. Lastly, cell cycle analysis was conducted using flow cytometry. Results: Upon 48 hours of treatment, compound P7a inhibited the proliferation of human breast cancer cells with1 IC50 values of 178.92 ± 12.51µM and 33.75 ± 1.20µM for MDA-MB-231 and MCF-7, respectively. Additionally, compound P7a showed selectivity towards the cancer cell line, MCF-7 compared to the normal breast cell line, hTERT-HME1, an advantage against current anticancer drugs (tamoxifen and vinblastine). Flow cytometric analyses using different assays indicated that compound P7a significantly increased the proportion of apoptotic cells, increased mitochondria membrane permeabilisation and caused generation of ROS in MCF-7. In addition, cell cycle analysis showed that cell proliferation was arrested at the G1 phase in the MCF-7 cell line. Furthermore, upon treatment, the MCF-7 cell line showed increased activity of caspase-3/7, and caspase-9. Lastly, the western blot analysis showed the up-regulation of pro-apoptotic proteins along with up-regulation of caspase-7 and caspase-9, indicating that an intrinsic pathway of apoptosis was induced. Conclusion: The results suggest that compound P7a could be a potential chemotherapeutic agent for breast cancer.

    Original languageEnglish
    Pages (from-to)1072-1086
    Number of pages15
    JournalAnti-Cancer Agents in Medicinal Chemistry
    Volume20
    Issue number9
    DOIs
    Publication statusPublished - 2020

    All Science Journal Classification (ASJC) codes

    • Molecular Medicine
    • Pharmacology
    • Cancer Research

    Fingerprint Dive into the research topics of 'Activation of intrinsic apoptosis and g<sub>1</sub> cell cycle arrest by a triazole precursor, n-(4-chlorophenyl)-2-(4-(3,4,5-trimethoxybenzyloxy)benzoyl)-hydrazinecarbothioamide in breast cancer cell line'. Together they form a unique fingerprint.

    Cite this