TY - JOUR
T1 - Activation of spinal dorsal horn astrocytes by noxious stimuli involves descending noradrenergic signaling
AU - Kawanabe, Riku
AU - Yoshihara, Kohei
AU - Hatada, Izuho
AU - Tsuda, Makoto
N1 - Funding Information:
This work was supported by JSPS KAKENHI Grant Numbers JP19K22500, JP19H05658, JP20H05900 (M.T.), by the Core Research for Evolutional Science and Technology (CREST) program from AMED under Grant Number JP20gm0910006 (M.T.), and by Platform Project for Supporting Drug Discovery and Life Science Research (Basis for Supporting Innovative Drug Discovery and Life Science Research (BINDS)) from AMED under Grant Number JP20am0101091 (M.T.). K.Y. was research fellows of the JSPS (19J21063).
Publisher Copyright:
© 2021, The Author(s).
PY - 2021/12
Y1 - 2021/12
N2 - Astrocytes are critical regulators of neuronal function in the central nervous system (CNS). We have previously shown that astrocytes in the spinal dorsal horn (SDH) have increased intracellular Ca2+ levels following intraplantar injection of the noxious irritant, formalin. However, the underlying mechanisms remain unknown. We investigated these mechanisms by focusing on the role of descending noradrenergic (NAergic) signaling because our recent study revealed the essential role of the astrocytic Ca2+ responses evoked by intraplantar capsaicin. Using in vivo SDH imaging, we found that the Ca2+ level increase in SDH astrocytes induced by intraplantar formalin injection was suppressed by ablation of SDH-projecting locus coeruleus (LC)-NAergic neurons. Furthermore, the formalin-induced Ca2+ response was dramatically decreased by the loss of α1A-adrenaline receptors (ARs) in astrocytes located in the superficial laminae of the SDH. Moreover, similar inhibition was observed in mice pretreated intrathecally with an α1A-AR-specific antagonist. Therefore, activation of α1A-ARs via descending LC-NAergic signals may be a common mechanism underlying astrocytic Ca2+ responses in the SDH evoked by noxious stimuli, including chemical irritants.
AB - Astrocytes are critical regulators of neuronal function in the central nervous system (CNS). We have previously shown that astrocytes in the spinal dorsal horn (SDH) have increased intracellular Ca2+ levels following intraplantar injection of the noxious irritant, formalin. However, the underlying mechanisms remain unknown. We investigated these mechanisms by focusing on the role of descending noradrenergic (NAergic) signaling because our recent study revealed the essential role of the astrocytic Ca2+ responses evoked by intraplantar capsaicin. Using in vivo SDH imaging, we found that the Ca2+ level increase in SDH astrocytes induced by intraplantar formalin injection was suppressed by ablation of SDH-projecting locus coeruleus (LC)-NAergic neurons. Furthermore, the formalin-induced Ca2+ response was dramatically decreased by the loss of α1A-adrenaline receptors (ARs) in astrocytes located in the superficial laminae of the SDH. Moreover, similar inhibition was observed in mice pretreated intrathecally with an α1A-AR-specific antagonist. Therefore, activation of α1A-ARs via descending LC-NAergic signals may be a common mechanism underlying astrocytic Ca2+ responses in the SDH evoked by noxious stimuli, including chemical irritants.
UR - http://www.scopus.com/inward/record.url?scp=85105620284&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85105620284&partnerID=8YFLogxK
U2 - 10.1186/s13041-021-00788-5
DO - 10.1186/s13041-021-00788-5
M3 - Article
C2 - 33971918
AN - SCOPUS:85105620284
SN - 1756-6606
VL - 14
JO - Molecular Brain
JF - Molecular Brain
IS - 1
M1 - 79
ER -