TY - JOUR
T1 - Activity of alumina-silica-supported NiMoS prepared by controlled mixing of alumina into SiO2 hydrogels for HDS of gas oil
AU - Nakano, Koji
AU - Pang, Weiwei
AU - Lee, Jihn Koo
AU - Park, Joo Il
AU - Yoon, Seong Ho
AU - Mochida, Isao
PY - 2011/5
Y1 - 2011/5
N2 - Alumina-silica-supported NiMoS composites were examined in single- and dual-layer catalyst beds in a high-pressure (5 MPa) flow reactor to achieve ultra low sulfur (10 ppm) diesel fuels. Three types of alumina-silica composite supports were prepared by co-precipitation to control the particle size and arrangement of alumina and silica. The SiO2 content was found to be influential on catalytic performance, being best by around 27% regardless of preparation conditions. Alumina crystal size controlled the acidity and surface area of the support, key factors influencing catalytic performance. NiMoASA-2(27), prepared by procedure 2, achieved 4.5 and 3 ppm S at 345 and 360 °C, respectively, in the single bed reactor at a liquid hourly space velocity (LHSV) of 1 h- 1. NiMoASA-2(27) achieved the best performance of the supports examined in this study. The double-layer catalyst bed contained commercial CoMoS (LX6) and NiMoASA-2(27) in the first and the second beds at 345 and 360 °C, respectively, and achieved 5 and 2 ppm S, indicating better performance at higher temperatures. The reaction order for the hydrodesulfurization (HDS) of refractory sulfur species was close to unity over NiMoASA-2(27), which was significantly higher than that of the commercial CoMoS catalyst. Alumina-silica-supported NiMoS in the second bed of the dual-layer catalyst bed achieved less than 10 ppm S for refractory sulfur species with around 500 ppm S.
AB - Alumina-silica-supported NiMoS composites were examined in single- and dual-layer catalyst beds in a high-pressure (5 MPa) flow reactor to achieve ultra low sulfur (10 ppm) diesel fuels. Three types of alumina-silica composite supports were prepared by co-precipitation to control the particle size and arrangement of alumina and silica. The SiO2 content was found to be influential on catalytic performance, being best by around 27% regardless of preparation conditions. Alumina crystal size controlled the acidity and surface area of the support, key factors influencing catalytic performance. NiMoASA-2(27), prepared by procedure 2, achieved 4.5 and 3 ppm S at 345 and 360 °C, respectively, in the single bed reactor at a liquid hourly space velocity (LHSV) of 1 h- 1. NiMoASA-2(27) achieved the best performance of the supports examined in this study. The double-layer catalyst bed contained commercial CoMoS (LX6) and NiMoASA-2(27) in the first and the second beds at 345 and 360 °C, respectively, and achieved 5 and 2 ppm S, indicating better performance at higher temperatures. The reaction order for the hydrodesulfurization (HDS) of refractory sulfur species was close to unity over NiMoASA-2(27), which was significantly higher than that of the commercial CoMoS catalyst. Alumina-silica-supported NiMoS in the second bed of the dual-layer catalyst bed achieved less than 10 ppm S for refractory sulfur species with around 500 ppm S.
UR - http://www.scopus.com/inward/record.url?scp=79952188932&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79952188932&partnerID=8YFLogxK
U2 - 10.1016/j.fuproc.2010.12.024
DO - 10.1016/j.fuproc.2010.12.024
M3 - Article
AN - SCOPUS:79952188932
SN - 0378-3820
VL - 92
SP - 1012
EP - 1018
JO - Fuel Processing Technology
JF - Fuel Processing Technology
IS - 5
ER -