Adaptive aggregation of arbitrary online trackers with a regret bound

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)

Abstract

We propose an online visual-object tracking method that is robust even in an adversarial environment, where various disturbances may occur on the target appearance, etc. The proposed method is based on a delayed-Hedge algorithm for aggregating multiple arbitrary online trackers with adaptive weights. The robustness in the tracking performance is guaranteed theoretically in term of "regret" by the property of the delayed-Hedge algorithm. Roughly speaking, the proposed method can achieve a similar tracking performance as the best one among all the trackers to be aggregated in an adversarial environment. The experimental study on various tracking tasks shows that the proposed method could achieve state-of-the-art performance by aggregating various online trackers.

Original languageEnglish
Title of host publicationProceedings - 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages670-678
Number of pages9
ISBN (Electronic)9781728165530
DOIs
Publication statusPublished - Mar 2020
Event2020 IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2020 - Snowmass Village, United States
Duration: Mar 1 2020Mar 5 2020

Publication series

NameProceedings - 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020

Conference

Conference2020 IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2020
Country/TerritoryUnited States
CitySnowmass Village
Period3/1/203/5/20

All Science Journal Classification (ASJC) codes

  • Computer Science Applications
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Adaptive aggregation of arbitrary online trackers with a regret bound'. Together they form a unique fingerprint.

Cite this