AEgIS experiment: Towards antihydrogen beam production for antimatter gravity measurements

Sebastiano Mariazzi, Stefano Aghion, Claude Amsler, Akitaka Ariga, Tomoko Ariga, Alexandre S. Belov, Germano Bonomi, Philippe Bräunig, Roberto S. Brusa, Johan Bremer, Louis Cabaret, Carlo Canali, Ruggero Caravita, Fabrizio Castelli, Giovanni Cerchiari, Simone Cialdi, Daniel Comparat, Giovanni Consolati, Luca Dassa, Jan Hendrik DerkingSergio Di Domizio, Lea Di Noto, Michael Doser, Alexey Dudarev, Antonio Ereditato, Rafael Ferragut, Andrea Fontana, Pablo Genova, Marco Giammarchi, Angela Gligorova, Sergei N. Gninenko, Stephen D. Hogan, Stefan Haider, Elena Jordan, Lars V. Jørgensen, Thomas Kaltenbacher, Jiro Kawada, Alban Kellerbauer, Mitsuhiro Kimura, Andreas Knecht, Daniel Krasnický, Vittorio Lagomarsino, Sebastian Lehner, Chloe Malbrunot, Viktor A. Matveev, Frederic Merkt, Fabio Moia, Giancarlo Nebbia, Patrick Nedelec, Markus K. Oberthaler, Nicola Pacifico, Vojtech Petráček, Ciro Pistillo, Francesco Prelz, Marco Prevedelli, Christian Regenfus, Cristina Riccardi, Ole Røhne, Alberto Rotondi, Heidi Sandaker, Paola Scampoli, James Storey, Martin A.Subieta Vasquez, Michal Špaček, Gemma Testera, Renzo Vaccarone, Fabio Villa, Eberhard Widmann, Sandra Zavatarelli, Johann Zmeskal

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

AEgIS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy) is an experiment that aims to perform the first direct measurement of the gravitational acceleration g of antihydrogen in the Earth's field. A cold antihydrogen beam will be produced by charge exchange reaction between cold antiprotons and positronium excited in Rydberg states. Rydberg positronium (with quantum number n between 20 and 30) will be produced by a two steps laser excitation. The antihydrogen beam, after being accelerated by Stark effect, will fly through the gratings of a moiré deflectometer. The deflection of the horizontal beam due to its free fall will be measured by a position sensitive detector. It is estimated that the detection of about 103antihydrogen atoms is required to determine the gravitational acceleration with a precision of 1%. In this report an overview of the AEgIS experiment is presented and its current status is described. Details on the production of slow positronium and its excitation with lasers are discussed.

Original languageEnglish
Article number41
JournalEuropean Physical Journal D
Volume68
Issue number3
DOIs
Publication statusPublished - Mar 1 2014
Externally publishedYes

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Atomic and Molecular Physics, and Optics

Cite this