Aerosol retrieval from two-wavelength backscatter and one-wavelength polarization lidar measurement taken during the MR01K02 cruise of the R/V Mirai and evaluation of a global aerosol transport model

Tomoaki Nishizawa, Hajime Okamoto, Toshihiko Takemura, Nobuo Sugimoto, Ichiro Matsui, Atsushi Shimizu

    Research output: Contribution to journalArticle

    13 Citations (Scopus)

    Abstract

    Using two-wavelength lidar with one-wavelength depolarization measurement installed on the research vessel Mirai, we retrieved vertical distributions of extinction coefficients of water-soluble, sea-salt, and dust particles at 532 nm. In the retrieval, the mode radii, standard deviations, and refractive indexes for each aerosol component are prescribed; the retrieval uncertainties due to spherical assumption in our dust model are estimated to be 30-50%. The ship-based measurements were conducted in the western Pacific Ocean near Japan from 14 to 27 May 2001. For the analysis, we applied two-wavelength lidar algorithms to the three-channel lidar data, i.e., for signal strengths at 532 and 1064 nm and the total depolarization ratio at 532 nm. Water-soluble and sea-salt particles occurred below 1 km, whereas air masses dominated by water-soluble and dust particles were sometimes found above 1 km. We also investigated the correlation of sea-salt extinction coefficient with surface wind velocity for various altitudes. A positive correlation was found at low altitude, but no correlation was indicated at high altitude. We also compared the extinction coefficients of water-soluble and sea-salt particles directly under cloud bottom with those in clear-sky. Below clouds, the extinction coefficients of water-soluble and sea-salt particles were 1.6 and 1.4 times larger, respectively, than those in clear sky; this could be explained by hygroscopic growth using Hänel theory. Finally, we evaluated the global aerosol transport model SPRINTARS using the retrieved aerosol properties and measured lidar signals. The model underestimated sea salt and overestimated dust, although the general patterns agreed with the observed patterns.

    Original languageEnglish
    Article numberD21201
    JournalJournal of Geophysical Research Atmospheres
    Volume113
    Issue number21
    DOIs
    Publication statusPublished - Nov 16 2008

    Fingerprint

    lidar
    sea salt
    Optical radar
    aerosols
    Aerosols
    optical radar
    backscatter
    retrieval
    wavelengths
    polarization
    Salts
    extinction coefficient
    Polarization
    aerosol
    salts
    wavelength
    dust
    Wavelength
    Dust
    evaluation

    All Science Journal Classification (ASJC) codes

    • Geophysics
    • Forestry
    • Oceanography
    • Aquatic Science
    • Ecology
    • Water Science and Technology
    • Soil Science
    • Geochemistry and Petrology
    • Earth-Surface Processes
    • Atmospheric Science
    • Earth and Planetary Sciences (miscellaneous)
    • Space and Planetary Science
    • Palaeontology

    Cite this

    @article{0db7738675bf40c7a525030ffa1b17d2,
    title = "Aerosol retrieval from two-wavelength backscatter and one-wavelength polarization lidar measurement taken during the MR01K02 cruise of the R/V Mirai and evaluation of a global aerosol transport model",
    abstract = "Using two-wavelength lidar with one-wavelength depolarization measurement installed on the research vessel Mirai, we retrieved vertical distributions of extinction coefficients of water-soluble, sea-salt, and dust particles at 532 nm. In the retrieval, the mode radii, standard deviations, and refractive indexes for each aerosol component are prescribed; the retrieval uncertainties due to spherical assumption in our dust model are estimated to be 30-50{\%}. The ship-based measurements were conducted in the western Pacific Ocean near Japan from 14 to 27 May 2001. For the analysis, we applied two-wavelength lidar algorithms to the three-channel lidar data, i.e., for signal strengths at 532 and 1064 nm and the total depolarization ratio at 532 nm. Water-soluble and sea-salt particles occurred below 1 km, whereas air masses dominated by water-soluble and dust particles were sometimes found above 1 km. We also investigated the correlation of sea-salt extinction coefficient with surface wind velocity for various altitudes. A positive correlation was found at low altitude, but no correlation was indicated at high altitude. We also compared the extinction coefficients of water-soluble and sea-salt particles directly under cloud bottom with those in clear-sky. Below clouds, the extinction coefficients of water-soluble and sea-salt particles were 1.6 and 1.4 times larger, respectively, than those in clear sky; this could be explained by hygroscopic growth using H{\"a}nel theory. Finally, we evaluated the global aerosol transport model SPRINTARS using the retrieved aerosol properties and measured lidar signals. The model underestimated sea salt and overestimated dust, although the general patterns agreed with the observed patterns.",
    author = "Tomoaki Nishizawa and Hajime Okamoto and Toshihiko Takemura and Nobuo Sugimoto and Ichiro Matsui and Atsushi Shimizu",
    year = "2008",
    month = "11",
    day = "16",
    doi = "10.1029/2007JD009640",
    language = "English",
    volume = "113",
    journal = "Journal of Geophysical Research",
    issn = "0148-0227",
    number = "21",

    }

    TY - JOUR

    T1 - Aerosol retrieval from two-wavelength backscatter and one-wavelength polarization lidar measurement taken during the MR01K02 cruise of the R/V Mirai and evaluation of a global aerosol transport model

    AU - Nishizawa, Tomoaki

    AU - Okamoto, Hajime

    AU - Takemura, Toshihiko

    AU - Sugimoto, Nobuo

    AU - Matsui, Ichiro

    AU - Shimizu, Atsushi

    PY - 2008/11/16

    Y1 - 2008/11/16

    N2 - Using two-wavelength lidar with one-wavelength depolarization measurement installed on the research vessel Mirai, we retrieved vertical distributions of extinction coefficients of water-soluble, sea-salt, and dust particles at 532 nm. In the retrieval, the mode radii, standard deviations, and refractive indexes for each aerosol component are prescribed; the retrieval uncertainties due to spherical assumption in our dust model are estimated to be 30-50%. The ship-based measurements were conducted in the western Pacific Ocean near Japan from 14 to 27 May 2001. For the analysis, we applied two-wavelength lidar algorithms to the three-channel lidar data, i.e., for signal strengths at 532 and 1064 nm and the total depolarization ratio at 532 nm. Water-soluble and sea-salt particles occurred below 1 km, whereas air masses dominated by water-soluble and dust particles were sometimes found above 1 km. We also investigated the correlation of sea-salt extinction coefficient with surface wind velocity for various altitudes. A positive correlation was found at low altitude, but no correlation was indicated at high altitude. We also compared the extinction coefficients of water-soluble and sea-salt particles directly under cloud bottom with those in clear-sky. Below clouds, the extinction coefficients of water-soluble and sea-salt particles were 1.6 and 1.4 times larger, respectively, than those in clear sky; this could be explained by hygroscopic growth using Hänel theory. Finally, we evaluated the global aerosol transport model SPRINTARS using the retrieved aerosol properties and measured lidar signals. The model underestimated sea salt and overestimated dust, although the general patterns agreed with the observed patterns.

    AB - Using two-wavelength lidar with one-wavelength depolarization measurement installed on the research vessel Mirai, we retrieved vertical distributions of extinction coefficients of water-soluble, sea-salt, and dust particles at 532 nm. In the retrieval, the mode radii, standard deviations, and refractive indexes for each aerosol component are prescribed; the retrieval uncertainties due to spherical assumption in our dust model are estimated to be 30-50%. The ship-based measurements were conducted in the western Pacific Ocean near Japan from 14 to 27 May 2001. For the analysis, we applied two-wavelength lidar algorithms to the three-channel lidar data, i.e., for signal strengths at 532 and 1064 nm and the total depolarization ratio at 532 nm. Water-soluble and sea-salt particles occurred below 1 km, whereas air masses dominated by water-soluble and dust particles were sometimes found above 1 km. We also investigated the correlation of sea-salt extinction coefficient with surface wind velocity for various altitudes. A positive correlation was found at low altitude, but no correlation was indicated at high altitude. We also compared the extinction coefficients of water-soluble and sea-salt particles directly under cloud bottom with those in clear-sky. Below clouds, the extinction coefficients of water-soluble and sea-salt particles were 1.6 and 1.4 times larger, respectively, than those in clear sky; this could be explained by hygroscopic growth using Hänel theory. Finally, we evaluated the global aerosol transport model SPRINTARS using the retrieved aerosol properties and measured lidar signals. The model underestimated sea salt and overestimated dust, although the general patterns agreed with the observed patterns.

    UR - http://www.scopus.com/inward/record.url?scp=58249083353&partnerID=8YFLogxK

    UR - http://www.scopus.com/inward/citedby.url?scp=58249083353&partnerID=8YFLogxK

    U2 - 10.1029/2007JD009640

    DO - 10.1029/2007JD009640

    M3 - Article

    AN - SCOPUS:58249083353

    VL - 113

    JO - Journal of Geophysical Research

    JF - Journal of Geophysical Research

    SN - 0148-0227

    IS - 21

    M1 - D21201

    ER -