Algorithms for computing multiplier ideals

Takafumi Shibuta

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

We give algorithms for computing multiplier ideals using Gröbner bases in Weyl algebras. To this end, we define a modification of Budur-MustaǍǎ-Saito's generalized Bernstein-Sato polynomial. We present several examples computed by our algorithm.

Original languageEnglish
Pages (from-to)2829-2842
Number of pages14
JournalJournal of Pure and Applied Algebra
Volume215
Issue number12
DOIs
Publication statusPublished - Dec 1 2011

Fingerprint

Multiplier Ideals
Weyl Algebra
Bernstein Polynomials
Computing
Generalized Polynomials

All Science Journal Classification (ASJC) codes

  • Algebra and Number Theory

Cite this

Algorithms for computing multiplier ideals. / Shibuta, Takafumi.

In: Journal of Pure and Applied Algebra, Vol. 215, No. 12, 01.12.2011, p. 2829-2842.

Research output: Contribution to journalArticle

Shibuta, Takafumi. / Algorithms for computing multiplier ideals. In: Journal of Pure and Applied Algebra. 2011 ; Vol. 215, No. 12. pp. 2829-2842.
@article{ee2a9146c8a844719bd1689ef9013fcb,
title = "Algorithms for computing multiplier ideals",
abstract = "We give algorithms for computing multiplier ideals using Gr{\"o}bner bases in Weyl algebras. To this end, we define a modification of Budur-MustaǍǎ-Saito's generalized Bernstein-Sato polynomial. We present several examples computed by our algorithm.",
author = "Takafumi Shibuta",
year = "2011",
month = "12",
day = "1",
doi = "10.1016/j.jpaa.2011.04.002",
language = "English",
volume = "215",
pages = "2829--2842",
journal = "Journal of Pure and Applied Algebra",
issn = "0022-4049",
publisher = "Elsevier",
number = "12",

}

TY - JOUR

T1 - Algorithms for computing multiplier ideals

AU - Shibuta, Takafumi

PY - 2011/12/1

Y1 - 2011/12/1

N2 - We give algorithms for computing multiplier ideals using Gröbner bases in Weyl algebras. To this end, we define a modification of Budur-MustaǍǎ-Saito's generalized Bernstein-Sato polynomial. We present several examples computed by our algorithm.

AB - We give algorithms for computing multiplier ideals using Gröbner bases in Weyl algebras. To this end, we define a modification of Budur-MustaǍǎ-Saito's generalized Bernstein-Sato polynomial. We present several examples computed by our algorithm.

UR - http://www.scopus.com/inward/record.url?scp=79959369643&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=79959369643&partnerID=8YFLogxK

U2 - 10.1016/j.jpaa.2011.04.002

DO - 10.1016/j.jpaa.2011.04.002

M3 - Article

VL - 215

SP - 2829

EP - 2842

JO - Journal of Pure and Applied Algebra

JF - Journal of Pure and Applied Algebra

SN - 0022-4049

IS - 12

ER -