Allele loss and promoter hypermethylation of VHL, RAR-β, RASSF1A, and FHIT tumor suppressor genes on chromosome 3p in esophageal squamous cell carcinoma

Tamotsu Kuroki, Francesco Trapasso, Sai Yendamuri, Ayumi Matsuyama, Hansjuerg Alder, Masaki Mori, Carlo M. Croce

Research output: Contribution to journalArticle

152 Citations (Scopus)

Abstract

Promoter hypermethylation is an alternative way to inactivate tumor suppressor genes in cancer. Alterations of chromosome 3p are frequently involved in many types of cancer, including esophageal squamous cell carcinoma. Here, we investigated the methylation status and loss of heterozygosity (LOH) of 3p tumor suppressor genes. We examined the promoter methylation status of von Hippel-Lindau disease (VHL), retinoic acid receptor β (RAR-β), RAS association domain family 1A (RASSF1A), and fragile histidine triad (FHIT) genes in 22 esophageal squamous cell carcinoma cell lines and 47 primary tumors and corresponding noncancerous tissues by a methylation-specific PCR. In addition, we analyzed 47 paired samples for LOH at eight loci on chromosome 3p. Hypermethylation in VHL, RAR-β, RASSF1A, and FHIT was detected in 36, 73, 73, and 50% of tumor cell lines, respectively. In primary tumors, hypermethylation in VHL, RAR-β, RASSF1A, and FHIT was detected in 13, 55, 51, and 45%, respectively. In corresponding noncancerous tissues, hypermethylation in RAR-β and FHIT was frequently detected in 38 and 30%, respectively, whereas no VHL hypermethylation and only 4% of RASSF1A hypermethylation were detected. Furthermore, in clinical stages I and II, hypermethylation in RAR-β (67%) and FHIT (78%) was frequently detected, whereas no VHL hypermethylation and 11% of RASSF1A hypermethylation were detected. On the other hand, the correlation between FHIT hypermethylation and LOH at FHIT region was statistically significant (P = 0.008). Our findings suggest that hypermethylation of the RAR-β and FHIT may play an important role in the early stage of esophageal squamous cell carcinogenesis. In addition, FHIT may be inactivated in accordance with the two-hit inactivation model, involving deletion of one allele and hypermethylation of the other.

Original languageEnglish
Pages (from-to)3724-3728
Number of pages5
JournalCancer Research
Volume63
Issue number13
Publication statusPublished - Jul 1 2003

Fingerprint

von Hippel-Lindau Disease
Retinoic Acid Receptors
Tumor Suppressor Genes
Histidine
Chromosomes
Alleles
Loss of Heterozygosity
Methylation
Neoplasms
Esophageal Squamous Cell Carcinoma
Tumor Cell Line
Carcinogenesis
Epithelial Cells
Cell Line
Polymerase Chain Reaction

All Science Journal Classification (ASJC) codes

  • Oncology
  • Cancer Research

Cite this

Allele loss and promoter hypermethylation of VHL, RAR-β, RASSF1A, and FHIT tumor suppressor genes on chromosome 3p in esophageal squamous cell carcinoma. / Kuroki, Tamotsu; Trapasso, Francesco; Yendamuri, Sai; Matsuyama, Ayumi; Alder, Hansjuerg; Mori, Masaki; Croce, Carlo M.

In: Cancer Research, Vol. 63, No. 13, 01.07.2003, p. 3724-3728.

Research output: Contribution to journalArticle

Kuroki, Tamotsu ; Trapasso, Francesco ; Yendamuri, Sai ; Matsuyama, Ayumi ; Alder, Hansjuerg ; Mori, Masaki ; Croce, Carlo M. / Allele loss and promoter hypermethylation of VHL, RAR-β, RASSF1A, and FHIT tumor suppressor genes on chromosome 3p in esophageal squamous cell carcinoma. In: Cancer Research. 2003 ; Vol. 63, No. 13. pp. 3724-3728.
@article{e33abe46b35043f89599309b51e75ca6,
title = "Allele loss and promoter hypermethylation of VHL, RAR-β, RASSF1A, and FHIT tumor suppressor genes on chromosome 3p in esophageal squamous cell carcinoma",
abstract = "Promoter hypermethylation is an alternative way to inactivate tumor suppressor genes in cancer. Alterations of chromosome 3p are frequently involved in many types of cancer, including esophageal squamous cell carcinoma. Here, we investigated the methylation status and loss of heterozygosity (LOH) of 3p tumor suppressor genes. We examined the promoter methylation status of von Hippel-Lindau disease (VHL), retinoic acid receptor β (RAR-β), RAS association domain family 1A (RASSF1A), and fragile histidine triad (FHIT) genes in 22 esophageal squamous cell carcinoma cell lines and 47 primary tumors and corresponding noncancerous tissues by a methylation-specific PCR. In addition, we analyzed 47 paired samples for LOH at eight loci on chromosome 3p. Hypermethylation in VHL, RAR-β, RASSF1A, and FHIT was detected in 36, 73, 73, and 50{\%} of tumor cell lines, respectively. In primary tumors, hypermethylation in VHL, RAR-β, RASSF1A, and FHIT was detected in 13, 55, 51, and 45{\%}, respectively. In corresponding noncancerous tissues, hypermethylation in RAR-β and FHIT was frequently detected in 38 and 30{\%}, respectively, whereas no VHL hypermethylation and only 4{\%} of RASSF1A hypermethylation were detected. Furthermore, in clinical stages I and II, hypermethylation in RAR-β (67{\%}) and FHIT (78{\%}) was frequently detected, whereas no VHL hypermethylation and 11{\%} of RASSF1A hypermethylation were detected. On the other hand, the correlation between FHIT hypermethylation and LOH at FHIT region was statistically significant (P = 0.008). Our findings suggest that hypermethylation of the RAR-β and FHIT may play an important role in the early stage of esophageal squamous cell carcinogenesis. In addition, FHIT may be inactivated in accordance with the two-hit inactivation model, involving deletion of one allele and hypermethylation of the other.",
author = "Tamotsu Kuroki and Francesco Trapasso and Sai Yendamuri and Ayumi Matsuyama and Hansjuerg Alder and Masaki Mori and Croce, {Carlo M.}",
year = "2003",
month = "7",
day = "1",
language = "English",
volume = "63",
pages = "3724--3728",
journal = "Journal of Cancer Research",
issn = "0099-7013",
publisher = "American Association for Cancer Research Inc.",
number = "13",

}

TY - JOUR

T1 - Allele loss and promoter hypermethylation of VHL, RAR-β, RASSF1A, and FHIT tumor suppressor genes on chromosome 3p in esophageal squamous cell carcinoma

AU - Kuroki, Tamotsu

AU - Trapasso, Francesco

AU - Yendamuri, Sai

AU - Matsuyama, Ayumi

AU - Alder, Hansjuerg

AU - Mori, Masaki

AU - Croce, Carlo M.

PY - 2003/7/1

Y1 - 2003/7/1

N2 - Promoter hypermethylation is an alternative way to inactivate tumor suppressor genes in cancer. Alterations of chromosome 3p are frequently involved in many types of cancer, including esophageal squamous cell carcinoma. Here, we investigated the methylation status and loss of heterozygosity (LOH) of 3p tumor suppressor genes. We examined the promoter methylation status of von Hippel-Lindau disease (VHL), retinoic acid receptor β (RAR-β), RAS association domain family 1A (RASSF1A), and fragile histidine triad (FHIT) genes in 22 esophageal squamous cell carcinoma cell lines and 47 primary tumors and corresponding noncancerous tissues by a methylation-specific PCR. In addition, we analyzed 47 paired samples for LOH at eight loci on chromosome 3p. Hypermethylation in VHL, RAR-β, RASSF1A, and FHIT was detected in 36, 73, 73, and 50% of tumor cell lines, respectively. In primary tumors, hypermethylation in VHL, RAR-β, RASSF1A, and FHIT was detected in 13, 55, 51, and 45%, respectively. In corresponding noncancerous tissues, hypermethylation in RAR-β and FHIT was frequently detected in 38 and 30%, respectively, whereas no VHL hypermethylation and only 4% of RASSF1A hypermethylation were detected. Furthermore, in clinical stages I and II, hypermethylation in RAR-β (67%) and FHIT (78%) was frequently detected, whereas no VHL hypermethylation and 11% of RASSF1A hypermethylation were detected. On the other hand, the correlation between FHIT hypermethylation and LOH at FHIT region was statistically significant (P = 0.008). Our findings suggest that hypermethylation of the RAR-β and FHIT may play an important role in the early stage of esophageal squamous cell carcinogenesis. In addition, FHIT may be inactivated in accordance with the two-hit inactivation model, involving deletion of one allele and hypermethylation of the other.

AB - Promoter hypermethylation is an alternative way to inactivate tumor suppressor genes in cancer. Alterations of chromosome 3p are frequently involved in many types of cancer, including esophageal squamous cell carcinoma. Here, we investigated the methylation status and loss of heterozygosity (LOH) of 3p tumor suppressor genes. We examined the promoter methylation status of von Hippel-Lindau disease (VHL), retinoic acid receptor β (RAR-β), RAS association domain family 1A (RASSF1A), and fragile histidine triad (FHIT) genes in 22 esophageal squamous cell carcinoma cell lines and 47 primary tumors and corresponding noncancerous tissues by a methylation-specific PCR. In addition, we analyzed 47 paired samples for LOH at eight loci on chromosome 3p. Hypermethylation in VHL, RAR-β, RASSF1A, and FHIT was detected in 36, 73, 73, and 50% of tumor cell lines, respectively. In primary tumors, hypermethylation in VHL, RAR-β, RASSF1A, and FHIT was detected in 13, 55, 51, and 45%, respectively. In corresponding noncancerous tissues, hypermethylation in RAR-β and FHIT was frequently detected in 38 and 30%, respectively, whereas no VHL hypermethylation and only 4% of RASSF1A hypermethylation were detected. Furthermore, in clinical stages I and II, hypermethylation in RAR-β (67%) and FHIT (78%) was frequently detected, whereas no VHL hypermethylation and 11% of RASSF1A hypermethylation were detected. On the other hand, the correlation between FHIT hypermethylation and LOH at FHIT region was statistically significant (P = 0.008). Our findings suggest that hypermethylation of the RAR-β and FHIT may play an important role in the early stage of esophageal squamous cell carcinogenesis. In addition, FHIT may be inactivated in accordance with the two-hit inactivation model, involving deletion of one allele and hypermethylation of the other.

UR - http://www.scopus.com/inward/record.url?scp=0038756374&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0038756374&partnerID=8YFLogxK

M3 - Article

C2 - 12839965

AN - SCOPUS:0038756374

VL - 63

SP - 3724

EP - 3728

JO - Journal of Cancer Research

JF - Journal of Cancer Research

SN - 0099-7013

IS - 13

ER -