ALMA High Angular Resolution Polarization Study; An Extremely Young Class 0 Source, OMC-3/MMS 6

Satoko Takahashi, Masahiro N. Machida, Kohji Tomisaka, Paul T.P. Ho, Edward B. Fomalont, Kouichiro Nakanishi, Josep Miquel Girart

Research output: Contribution to journalArticlepeer-review


Using the ≈15km ALMA long baselines, we imaged the Stokes I emission and linearly polarized intensity (PI) in the 1.1-mm continuum band of a very young intermediate-mass protostellar source, MMS 6, in the Orion Molecular Cloud-3. The achieved angular resolution, 000.02×000.03 (≈10 AU), shows for the first time a wealth of data on the dust emission polarization in the central 200 AU of a protostar. The PI peak is offset to the south-west (SW) by ≈20 AU with respect to the Stokes I peak. Its polarization degree is 11% with its E-vector orientation of P.A.≈135. A partial ring-like structure with a radius of ≈80 AU is detected in PI but not in the Stokes I. NW (north-west) and SE (south-east) parts of the ring are bright with a high polarization degree of &10%, and their E-vector orientations are roughly orthogonal to those observed near the center. We also detected arm-like polarized structures, extending to 1000 AU scale to the north, with the E-vectors aligned along the minor axis of the structures. We explored possible origins of the polarized emission comparing with magnetohydrodynamical (MHD) simulations of the toroidal wrapping of the magnetic field. The simulations are consistent with the PI emission in the ring-like and the extended arm-like structures observed with ALMA. However, the current simulations do not completely reproduce observed polarization characteristics in the central 50 AU. Although the self-scattering model can explain the polarization pattern and positional offset between the Stokes I and PI, this model is not able to reproduce the observed high degree of polarization.

Original languageEnglish
JournalUnknown Journal
Publication statusPublished - Dec 7 2018

All Science Journal Classification (ASJC) codes

  • General

Fingerprint Dive into the research topics of 'ALMA High Angular Resolution Polarization Study; An Extremely Young Class 0 Source, OMC-3/MMS 6'. Together they form a unique fingerprint.

Cite this