Ammonia exchange between rice leaf blades and the atmosphere: Effect of broadcast urea and changes in xylem sap and leaf apoplastic ammonium concentrations

Kentaro Hayashi, Syuntaro Hiradate, Satoru Ishikawa, Isamu Nouchi

Research output: Contribution to journalArticle

18 Citations (Scopus)

Abstract

To elucidate the effects of broadcast urea on ammonia (NH3) exchange between the atmosphere and rice, we investigated the NH3 exchange flux between rice leaf blades and the atmosphere, xylem sap ammonium (NH4+) concentration, leaf apoplastic NH4 + concentration and pH, and determined the stomatal NH3 compensation point. Paddy rice (Oryza sativa L. cv. Nipponbare) cultivation using experimental pots was conducted in the open air. Three treatments, no nitrogen (NN), standard nitrogen (SN) and high nitrogen (HN), were prepared for two supplemental fertilizations. Urea with 0, 30 and 60 kg N ha-1 for the NN, SN and HN treatments, respectively, was broadcast at panicle initiation, and urea with 0, 20 and 40 kg N ha-1 for the NN, SN and HN treatments, respectively, was broadcast at heading. The NH3 exchange fluxes between the rice leaf blades and the atmosphere (SN treatment) measured using a dynamic chamber technique showed net deposition in general; however, net emission from the old leaves occurred 1 day after the application at heading. In contrast, the xylem sap NH4+ concentrations increased markedly 1 day after both applications, which suggests direct transportation of NH4+ from the rice roots to the above-ground parts. The applications resulted in no obvious increase in the leaf apoplastic NH4+ concentrations. The relationship between the NH4+ concentration in the xylem sap and that in the leaf apoplast was uncertain, although the NH4+ in the xylem sap came from the roots and the NH4+ in the apoplast might be affected by the stomatal deposition of NH3. The stomatal NH3 compensation point of rice was estimated to be 0.1-4.1 nmol mol-1 air (20°C). The direction and intensity of the exchange flux through the stomata, interpreted on the basis of the temperature-corrected NH3 compensation point, agreed with the observed exchange flux between the rice leaf blades and the atmosphere.

Original languageEnglish
Pages (from-to)807-818
Number of pages12
JournalSoil Science and Plant Nutrition
Volume54
Issue number5
DOIs
Publication statusPublished - Oct 1 2008
Externally publishedYes

Fingerprint

xylem
leaf blade
sap
urea
ammonia
ammonium
rice
atmosphere
nitrogen
leaves
apoplast
heading
effect
air
stomata
aerial parts
Oryza sativa

All Science Journal Classification (ASJC) codes

  • Soil Science
  • Plant Science

Cite this

Ammonia exchange between rice leaf blades and the atmosphere : Effect of broadcast urea and changes in xylem sap and leaf apoplastic ammonium concentrations. / Hayashi, Kentaro; Hiradate, Syuntaro; Ishikawa, Satoru; Nouchi, Isamu.

In: Soil Science and Plant Nutrition, Vol. 54, No. 5, 01.10.2008, p. 807-818.

Research output: Contribution to journalArticle

@article{7c4019912d5a400fa567c23e4789514b,
title = "Ammonia exchange between rice leaf blades and the atmosphere: Effect of broadcast urea and changes in xylem sap and leaf apoplastic ammonium concentrations",
abstract = "To elucidate the effects of broadcast urea on ammonia (NH3) exchange between the atmosphere and rice, we investigated the NH3 exchange flux between rice leaf blades and the atmosphere, xylem sap ammonium (NH4+) concentration, leaf apoplastic NH4 + concentration and pH, and determined the stomatal NH3 compensation point. Paddy rice (Oryza sativa L. cv. Nipponbare) cultivation using experimental pots was conducted in the open air. Three treatments, no nitrogen (NN), standard nitrogen (SN) and high nitrogen (HN), were prepared for two supplemental fertilizations. Urea with 0, 30 and 60 kg N ha-1 for the NN, SN and HN treatments, respectively, was broadcast at panicle initiation, and urea with 0, 20 and 40 kg N ha-1 for the NN, SN and HN treatments, respectively, was broadcast at heading. The NH3 exchange fluxes between the rice leaf blades and the atmosphere (SN treatment) measured using a dynamic chamber technique showed net deposition in general; however, net emission from the old leaves occurred 1 day after the application at heading. In contrast, the xylem sap NH4+ concentrations increased markedly 1 day after both applications, which suggests direct transportation of NH4+ from the rice roots to the above-ground parts. The applications resulted in no obvious increase in the leaf apoplastic NH4+ concentrations. The relationship between the NH4+ concentration in the xylem sap and that in the leaf apoplast was uncertain, although the NH4+ in the xylem sap came from the roots and the NH4+ in the apoplast might be affected by the stomatal deposition of NH3. The stomatal NH3 compensation point of rice was estimated to be 0.1-4.1 nmol mol-1 air (20°C). The direction and intensity of the exchange flux through the stomata, interpreted on the basis of the temperature-corrected NH3 compensation point, agreed with the observed exchange flux between the rice leaf blades and the atmosphere.",
author = "Kentaro Hayashi and Syuntaro Hiradate and Satoru Ishikawa and Isamu Nouchi",
year = "2008",
month = "10",
day = "1",
doi = "10.1111/j.1747-0765.2008.00299.x",
language = "English",
volume = "54",
pages = "807--818",
journal = "Soil Science and Plant Nutrition",
issn = "0038-0768",
publisher = "Taylor and Francis Ltd.",
number = "5",

}

TY - JOUR

T1 - Ammonia exchange between rice leaf blades and the atmosphere

T2 - Effect of broadcast urea and changes in xylem sap and leaf apoplastic ammonium concentrations

AU - Hayashi, Kentaro

AU - Hiradate, Syuntaro

AU - Ishikawa, Satoru

AU - Nouchi, Isamu

PY - 2008/10/1

Y1 - 2008/10/1

N2 - To elucidate the effects of broadcast urea on ammonia (NH3) exchange between the atmosphere and rice, we investigated the NH3 exchange flux between rice leaf blades and the atmosphere, xylem sap ammonium (NH4+) concentration, leaf apoplastic NH4 + concentration and pH, and determined the stomatal NH3 compensation point. Paddy rice (Oryza sativa L. cv. Nipponbare) cultivation using experimental pots was conducted in the open air. Three treatments, no nitrogen (NN), standard nitrogen (SN) and high nitrogen (HN), were prepared for two supplemental fertilizations. Urea with 0, 30 and 60 kg N ha-1 for the NN, SN and HN treatments, respectively, was broadcast at panicle initiation, and urea with 0, 20 and 40 kg N ha-1 for the NN, SN and HN treatments, respectively, was broadcast at heading. The NH3 exchange fluxes between the rice leaf blades and the atmosphere (SN treatment) measured using a dynamic chamber technique showed net deposition in general; however, net emission from the old leaves occurred 1 day after the application at heading. In contrast, the xylem sap NH4+ concentrations increased markedly 1 day after both applications, which suggests direct transportation of NH4+ from the rice roots to the above-ground parts. The applications resulted in no obvious increase in the leaf apoplastic NH4+ concentrations. The relationship between the NH4+ concentration in the xylem sap and that in the leaf apoplast was uncertain, although the NH4+ in the xylem sap came from the roots and the NH4+ in the apoplast might be affected by the stomatal deposition of NH3. The stomatal NH3 compensation point of rice was estimated to be 0.1-4.1 nmol mol-1 air (20°C). The direction and intensity of the exchange flux through the stomata, interpreted on the basis of the temperature-corrected NH3 compensation point, agreed with the observed exchange flux between the rice leaf blades and the atmosphere.

AB - To elucidate the effects of broadcast urea on ammonia (NH3) exchange between the atmosphere and rice, we investigated the NH3 exchange flux between rice leaf blades and the atmosphere, xylem sap ammonium (NH4+) concentration, leaf apoplastic NH4 + concentration and pH, and determined the stomatal NH3 compensation point. Paddy rice (Oryza sativa L. cv. Nipponbare) cultivation using experimental pots was conducted in the open air. Three treatments, no nitrogen (NN), standard nitrogen (SN) and high nitrogen (HN), were prepared for two supplemental fertilizations. Urea with 0, 30 and 60 kg N ha-1 for the NN, SN and HN treatments, respectively, was broadcast at panicle initiation, and urea with 0, 20 and 40 kg N ha-1 for the NN, SN and HN treatments, respectively, was broadcast at heading. The NH3 exchange fluxes between the rice leaf blades and the atmosphere (SN treatment) measured using a dynamic chamber technique showed net deposition in general; however, net emission from the old leaves occurred 1 day after the application at heading. In contrast, the xylem sap NH4+ concentrations increased markedly 1 day after both applications, which suggests direct transportation of NH4+ from the rice roots to the above-ground parts. The applications resulted in no obvious increase in the leaf apoplastic NH4+ concentrations. The relationship between the NH4+ concentration in the xylem sap and that in the leaf apoplast was uncertain, although the NH4+ in the xylem sap came from the roots and the NH4+ in the apoplast might be affected by the stomatal deposition of NH3. The stomatal NH3 compensation point of rice was estimated to be 0.1-4.1 nmol mol-1 air (20°C). The direction and intensity of the exchange flux through the stomata, interpreted on the basis of the temperature-corrected NH3 compensation point, agreed with the observed exchange flux between the rice leaf blades and the atmosphere.

UR - http://www.scopus.com/inward/record.url?scp=54249106775&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=54249106775&partnerID=8YFLogxK

U2 - 10.1111/j.1747-0765.2008.00299.x

DO - 10.1111/j.1747-0765.2008.00299.x

M3 - Article

AN - SCOPUS:54249106775

VL - 54

SP - 807

EP - 818

JO - Soil Science and Plant Nutrition

JF - Soil Science and Plant Nutrition

SN - 0038-0768

IS - 5

ER -