Abstract
Modern ground-based gravitational wave (GW) detectors require a complex interferometer configuration with multiple coupled optical cavities. Since achieving the resonances of the arm cavities is the most challenging among the lock acquisition processes, the scheme called arm length stabilization (ALS) had been employed for lock acquisition of the arm cavities. We designed a new type of the ALS, which is compatible with the interferometers having long arms like the next generation GW detectors. The features of the new ALS are that the control configuration is simpler than those of previous ones and that it is not necessary to lay optical fibers for the ALS along the kilometer-long arms of the detector. Along with simulations of its noise performance, an experimental test of the new ALS was performed utilizing a single arm cavity of KAGRA. This paper presents the first results of the test where we demonstrated that lock acquisition of the arm cavity was achieved using the new ALS. We also demonstrated that the root mean square of residual noise was measured to be 8.2 Hz in units of frequency, which is smaller than the linewidth of the arm cavity and thus low enough to lock the full interferometer of KAGRA in a repeatable and reliable manner.
Original language | English |
---|---|
Article number | 035004 |
Journal | Classical and Quantum Gravity |
Volume | 37 |
Issue number | 3 |
DOIs | |
Publication status | Published - Jan 13 2020 |
All Science Journal Classification (ASJC) codes
- Physics and Astronomy (miscellaneous)
Access to Document
Other files and links
Fingerprint
Dive into the research topics of 'An arm length stabilization system for KAGRA and future gravitational-wave detectors'. Together they form a unique fingerprint.Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
An arm length stabilization system for KAGRA and future gravitational-wave detectors. / Akutsu, T.; Ando, M.; Arai, K.; Arai, K.; Arai, Y.; Araki, S.; Araya, A.; Aritomi, N.; Aso, Y.; Bae, S.; Bae, Y.; Baiotti, L.; Bajpai, R.; Barton, M. A.; Cannon, K.; Capocasa, E.; Chan, M.; Chen, C. S.; Chen, K.; Chen, Y.; Chu, H.; Chu, Y. K.; Doi, K.; Eguchi, S.; Enomoto, Y.; Flaminio, R.; Fujii, Y.; Fukunaga, M.; Fukushima, M.; Ge, G. G.; Hagiwara, A.; Haino, S.; Hasegawa, K.; Hayakawa, H.; Hayama, K.; Himemoto, Y.; Hiranuma, Y.; Hirata, N.; Hirose, E.; Hong, Z.; Hsieh, B. H.; Huang, G. Z.; Huang, P. W.; Huang, Y.; Ikenoue, B.; Imam, S.; Inayoshi, K.; Inoue, Y.; Ioka, K.; Itoh, Y.; Izumi, K.; Jung, K.; Jung, P.; Kajita, T.; Kamiizumi, M.; Kanbara, S.; Kanda, N.; Kang, G.; Kawaguchi, K.; Kawai, N.; Kawasaki, T.; Kim, C.; Kim, J. C.; Kim, W. S.; Kim, Y. M.; Kimura, N.; Kita, N.; Kitazawa, H.; Kojima, Y.; Kokeyama, K.; Komori, K.; Kong, A. K.H.; Kotake, K.; Kozakai, C.; Kozu, R.; Kumar, R.; Kume, J.; Kuo, C.; Kuo, H. S.; Kuroyanagi, S.; Kusayanagi, K.; Kwak, K.; Lee, H. K.; Lee, H. W.; Lee, R.; Leonardi, M.; Lin, L. C.C.; Lin, C. Y.; Lin, F. L.; Liu, G. C.; Luo, L. W.; Marchio, M.; Michimura, Y.; Mio, N.; Miyakawa, O.; Miyamoto, A.; Miyazaki, Y.; Miyo, K.; Miyoki, S.; Morisaki, S.; Moriwaki, Y.; Musha, M.; Nagano, K.; Nagano, S.; Nakamura, K.; Nakano, H.; Nakano, M.; Nakashima, R.; Narikawa, T.; Negishi, R.; Ni, W. T.; Nishizawa, A.; Obuchi, Y.; Ogaki, W.; Oh, J. J.; Oh, S. H.; Ohashi, M.; Ohishi, N.; Ohkawa, M.; Ohmae, N.; Okutomi, K.; Oohara, K.; Ooi, C. P.; Oshino, S.; Pan, K. C.; Pang, H.; Park, J.; Peña Arellano, F. E.; Pinto, I.; Sago, N.; Saito, S.; Saito, Y.; Sakai, K.; Sakai, Y.; Sakuno, Y.; Sato, S.; Sato, T.; Sawada, T.; Sekiguchi, T.; Sekiguchi, Y.; Shibagaki, S.; Shimizu, R.; Shimoda, T.; Shimode, K.; Shinkai, H.; Shishido, T.; Shoda, A.; Somiya, K.; Son, E. J.; Sotani, H.; Sugimoto, R.; Suzuki, T.; Suzuki, T.; Tagoshi, H.; Takahashi, H.; Takahashi, R.; Takamori, A.; Takano, S.; Takeda, H.; Takeda, M.; Tanaka, H.; Tanaka, K.; Tanaka, K.; Tanaka, T.; Tanaka, T.; Tanioka, S.; Tapia San Martin, E. N.; Tatsumi, D.; Telada, S.; Tomaru, T.; Tomigami, Y.; Tomura, T.; Travasso, F.; Trozzo, L.; Tsang, T.; Tsubono, K.; Tsuchida, S.; Tsuzuki, T.; Tuyenbayev, D.; Uchikata, N.; Uchiyama, T.; Ueda, A.; Uehara, T.; Ueno, K.; Ueshima, G.; Uraguchi, F.; Ushiba, T.; van Putten, M. H.P.M.; Vocca, H.; Wang, J.; Wu, C.; Wu, H.; Wu, S.; Xu, W. R.; Yamada, T.; Yamamoto, K.; Yamamoto, K.; Yamamoto, T.; Yokogawa, K.; Yokoyama, J.; Yokozawa, T.; Yoshioka, T.; Yuzurihara, H.; Zeidler, S.; Zhao, Y.; Zhu, Z. H.
In: Classical and Quantum Gravity, Vol. 37, No. 3, 035004, 13.01.2020.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - An arm length stabilization system for KAGRA and future gravitational-wave detectors
AU - Akutsu, T.
AU - Ando, M.
AU - Arai, K.
AU - Arai, K.
AU - Arai, Y.
AU - Araki, S.
AU - Araya, A.
AU - Aritomi, N.
AU - Aso, Y.
AU - Bae, S.
AU - Bae, Y.
AU - Baiotti, L.
AU - Bajpai, R.
AU - Barton, M. A.
AU - Cannon, K.
AU - Capocasa, E.
AU - Chan, M.
AU - Chen, C. S.
AU - Chen, K.
AU - Chen, Y.
AU - Chu, H.
AU - Chu, Y. K.
AU - Doi, K.
AU - Eguchi, S.
AU - Enomoto, Y.
AU - Flaminio, R.
AU - Fujii, Y.
AU - Fukunaga, M.
AU - Fukushima, M.
AU - Ge, G. G.
AU - Hagiwara, A.
AU - Haino, S.
AU - Hasegawa, K.
AU - Hayakawa, H.
AU - Hayama, K.
AU - Himemoto, Y.
AU - Hiranuma, Y.
AU - Hirata, N.
AU - Hirose, E.
AU - Hong, Z.
AU - Hsieh, B. H.
AU - Huang, G. Z.
AU - Huang, P. W.
AU - Huang, Y.
AU - Ikenoue, B.
AU - Imam, S.
AU - Inayoshi, K.
AU - Inoue, Y.
AU - Ioka, K.
AU - Itoh, Y.
AU - Izumi, K.
AU - Jung, K.
AU - Jung, P.
AU - Kajita, T.
AU - Kamiizumi, M.
AU - Kanbara, S.
AU - Kanda, N.
AU - Kang, G.
AU - Kawaguchi, K.
AU - Kawai, N.
AU - Kawasaki, T.
AU - Kim, C.
AU - Kim, J. C.
AU - Kim, W. S.
AU - Kim, Y. M.
AU - Kimura, N.
AU - Kita, N.
AU - Kitazawa, H.
AU - Kojima, Y.
AU - Kokeyama, K.
AU - Komori, K.
AU - Kong, A. K.H.
AU - Kotake, K.
AU - Kozakai, C.
AU - Kozu, R.
AU - Kumar, R.
AU - Kume, J.
AU - Kuo, C.
AU - Kuo, H. S.
AU - Kuroyanagi, S.
AU - Kusayanagi, K.
AU - Kwak, K.
AU - Lee, H. K.
AU - Lee, H. W.
AU - Lee, R.
AU - Leonardi, M.
AU - Lin, L. C.C.
AU - Lin, C. Y.
AU - Lin, F. L.
AU - Liu, G. C.
AU - Luo, L. W.
AU - Marchio, M.
AU - Michimura, Y.
AU - Mio, N.
AU - Miyakawa, O.
AU - Miyamoto, A.
AU - Miyazaki, Y.
AU - Miyo, K.
AU - Miyoki, S.
AU - Morisaki, S.
AU - Moriwaki, Y.
AU - Musha, M.
AU - Nagano, K.
AU - Nagano, S.
AU - Nakamura, K.
AU - Nakano, H.
AU - Nakano, M.
AU - Nakashima, R.
AU - Narikawa, T.
AU - Negishi, R.
AU - Ni, W. T.
AU - Nishizawa, A.
AU - Obuchi, Y.
AU - Ogaki, W.
AU - Oh, J. J.
AU - Oh, S. H.
AU - Ohashi, M.
AU - Ohishi, N.
AU - Ohkawa, M.
AU - Ohmae, N.
AU - Okutomi, K.
AU - Oohara, K.
AU - Ooi, C. P.
AU - Oshino, S.
AU - Pan, K. C.
AU - Pang, H.
AU - Park, J.
AU - Peña Arellano, F. E.
AU - Pinto, I.
AU - Sago, N.
AU - Saito, S.
AU - Saito, Y.
AU - Sakai, K.
AU - Sakai, Y.
AU - Sakuno, Y.
AU - Sato, S.
AU - Sato, T.
AU - Sawada, T.
AU - Sekiguchi, T.
AU - Sekiguchi, Y.
AU - Shibagaki, S.
AU - Shimizu, R.
AU - Shimoda, T.
AU - Shimode, K.
AU - Shinkai, H.
AU - Shishido, T.
AU - Shoda, A.
AU - Somiya, K.
AU - Son, E. J.
AU - Sotani, H.
AU - Sugimoto, R.
AU - Suzuki, T.
AU - Suzuki, T.
AU - Tagoshi, H.
AU - Takahashi, H.
AU - Takahashi, R.
AU - Takamori, A.
AU - Takano, S.
AU - Takeda, H.
AU - Takeda, M.
AU - Tanaka, H.
AU - Tanaka, K.
AU - Tanaka, K.
AU - Tanaka, T.
AU - Tanaka, T.
AU - Tanioka, S.
AU - Tapia San Martin, E. N.
AU - Tatsumi, D.
AU - Telada, S.
AU - Tomaru, T.
AU - Tomigami, Y.
AU - Tomura, T.
AU - Travasso, F.
AU - Trozzo, L.
AU - Tsang, T.
AU - Tsubono, K.
AU - Tsuchida, S.
AU - Tsuzuki, T.
AU - Tuyenbayev, D.
AU - Uchikata, N.
AU - Uchiyama, T.
AU - Ueda, A.
AU - Uehara, T.
AU - Ueno, K.
AU - Ueshima, G.
AU - Uraguchi, F.
AU - Ushiba, T.
AU - van Putten, M. H.P.M.
AU - Vocca, H.
AU - Wang, J.
AU - Wu, C.
AU - Wu, H.
AU - Wu, S.
AU - Xu, W. R.
AU - Yamada, T.
AU - Yamamoto, K.
AU - Yamamoto, K.
AU - Yamamoto, T.
AU - Yokogawa, K.
AU - Yokoyama, J.
AU - Yokozawa, T.
AU - Yoshioka, T.
AU - Yuzurihara, H.
AU - Zeidler, S.
AU - Zhao, Y.
AU - Zhu, Z. H.
N1 - Funding Information: This work was supported by MEXT, JSPS Leading-edge Research Infrastructure Program, JSPS Grant-in-Aid for Specially Promoted Research 26000005, MEXT Grant-in-Aid for Scientific Research on Innovative Areas 24103005, JSPS Core-to-Core Program, A. Advanced Research Networks, the joint research program of the Institute for Cosmic Ray Research, University of Tokyo, National Research Foundation (NRF) and Computing Infrastructure Project of KISTI-GSDC in Korea, the LIGO project, and the Virgo project. Publisher Copyright: © 2020 IOP Publishing Ltd
PY - 2020/1/13
Y1 - 2020/1/13
N2 - Modern ground-based gravitational wave (GW) detectors require a complex interferometer configuration with multiple coupled optical cavities. Since achieving the resonances of the arm cavities is the most challenging among the lock acquisition processes, the scheme called arm length stabilization (ALS) had been employed for lock acquisition of the arm cavities. We designed a new type of the ALS, which is compatible with the interferometers having long arms like the next generation GW detectors. The features of the new ALS are that the control configuration is simpler than those of previous ones and that it is not necessary to lay optical fibers for the ALS along the kilometer-long arms of the detector. Along with simulations of its noise performance, an experimental test of the new ALS was performed utilizing a single arm cavity of KAGRA. This paper presents the first results of the test where we demonstrated that lock acquisition of the arm cavity was achieved using the new ALS. We also demonstrated that the root mean square of residual noise was measured to be 8.2 Hz in units of frequency, which is smaller than the linewidth of the arm cavity and thus low enough to lock the full interferometer of KAGRA in a repeatable and reliable manner.
AB - Modern ground-based gravitational wave (GW) detectors require a complex interferometer configuration with multiple coupled optical cavities. Since achieving the resonances of the arm cavities is the most challenging among the lock acquisition processes, the scheme called arm length stabilization (ALS) had been employed for lock acquisition of the arm cavities. We designed a new type of the ALS, which is compatible with the interferometers having long arms like the next generation GW detectors. The features of the new ALS are that the control configuration is simpler than those of previous ones and that it is not necessary to lay optical fibers for the ALS along the kilometer-long arms of the detector. Along with simulations of its noise performance, an experimental test of the new ALS was performed utilizing a single arm cavity of KAGRA. This paper presents the first results of the test where we demonstrated that lock acquisition of the arm cavity was achieved using the new ALS. We also demonstrated that the root mean square of residual noise was measured to be 8.2 Hz in units of frequency, which is smaller than the linewidth of the arm cavity and thus low enough to lock the full interferometer of KAGRA in a repeatable and reliable manner.
UR - http://www.scopus.com/inward/record.url?scp=85080069599&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85080069599&partnerID=8YFLogxK
U2 - 10.1088/1361-6382/ab5c95
DO - 10.1088/1361-6382/ab5c95
M3 - Article
AN - SCOPUS:85080069599
VL - 37
JO - Classical and Quantum Gravity
JF - Classical and Quantum Gravity
SN - 0264-9381
IS - 3
M1 - 035004
ER -