An efficient algorithm to test square-freeness of strings compressed by straight-line programs

Hideo Bannai, Travis Gagie, I. Tomohiro, Shunsuke Inenaga, Gad M. Landau, Moshe Lewenstein

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

We give a simple algorithm that, given a straight-line program of size n for a string S of length N, tests whether S is square-free in O(n 4logN) time and O(n 2) space. The algorithm also allows us to test square-freeness on an arbitrary composition system of size c for S, in O(c 4log 5N) time and O(c 2log 2N) space, which is faster than using the algorithm by Ga̧sieniec, Karpinski, Plandowski, and Rytter (1996) [4].

Original languageEnglish
Pages (from-to)711-714
Number of pages4
JournalInformation Processing Letters
Volume112
Issue number19
DOIs
Publication statusPublished - Oct 15 2012

Fingerprint

Straight-line Programs
Efficient Algorithms
Strings
Square free
Arbitrary
Chemical analysis

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • Signal Processing
  • Information Systems
  • Computer Science Applications

Cite this

An efficient algorithm to test square-freeness of strings compressed by straight-line programs. / Bannai, Hideo; Gagie, Travis; Tomohiro, I.; Inenaga, Shunsuke; Landau, Gad M.; Lewenstein, Moshe.

In: Information Processing Letters, Vol. 112, No. 19, 15.10.2012, p. 711-714.

Research output: Contribution to journalArticle

Bannai, Hideo ; Gagie, Travis ; Tomohiro, I. ; Inenaga, Shunsuke ; Landau, Gad M. ; Lewenstein, Moshe. / An efficient algorithm to test square-freeness of strings compressed by straight-line programs. In: Information Processing Letters. 2012 ; Vol. 112, No. 19. pp. 711-714.
@article{e87922ffc66a49a8904e96337ab8b7d3,
title = "An efficient algorithm to test square-freeness of strings compressed by straight-line programs",
abstract = "We give a simple algorithm that, given a straight-line program of size n for a string S of length N, tests whether S is square-free in O(n 4logN) time and O(n 2) space. The algorithm also allows us to test square-freeness on an arbitrary composition system of size c for S, in O(c 4log 5N) time and O(c 2log 2N) space, which is faster than using the algorithm by Ga̧sieniec, Karpinski, Plandowski, and Rytter (1996) [4].",
author = "Hideo Bannai and Travis Gagie and I. Tomohiro and Shunsuke Inenaga and Landau, {Gad M.} and Moshe Lewenstein",
year = "2012",
month = "10",
day = "15",
doi = "10.1016/j.ipl.2012.06.017",
language = "English",
volume = "112",
pages = "711--714",
journal = "Information Processing Letters",
issn = "0020-0190",
publisher = "Elsevier",
number = "19",

}

TY - JOUR

T1 - An efficient algorithm to test square-freeness of strings compressed by straight-line programs

AU - Bannai, Hideo

AU - Gagie, Travis

AU - Tomohiro, I.

AU - Inenaga, Shunsuke

AU - Landau, Gad M.

AU - Lewenstein, Moshe

PY - 2012/10/15

Y1 - 2012/10/15

N2 - We give a simple algorithm that, given a straight-line program of size n for a string S of length N, tests whether S is square-free in O(n 4logN) time and O(n 2) space. The algorithm also allows us to test square-freeness on an arbitrary composition system of size c for S, in O(c 4log 5N) time and O(c 2log 2N) space, which is faster than using the algorithm by Ga̧sieniec, Karpinski, Plandowski, and Rytter (1996) [4].

AB - We give a simple algorithm that, given a straight-line program of size n for a string S of length N, tests whether S is square-free in O(n 4logN) time and O(n 2) space. The algorithm also allows us to test square-freeness on an arbitrary composition system of size c for S, in O(c 4log 5N) time and O(c 2log 2N) space, which is faster than using the algorithm by Ga̧sieniec, Karpinski, Plandowski, and Rytter (1996) [4].

UR - http://www.scopus.com/inward/record.url?scp=84864150942&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84864150942&partnerID=8YFLogxK

U2 - 10.1016/j.ipl.2012.06.017

DO - 10.1016/j.ipl.2012.06.017

M3 - Article

VL - 112

SP - 711

EP - 714

JO - Information Processing Letters

JF - Information Processing Letters

SN - 0020-0190

IS - 19

ER -