An efficient antigene activity and antiproliferative effect by targeting the Bcl-2 or survivin gene with triplex forming oligonucleotides containing a W-shaped nucleoside analogue (WNA-βT)

Yosuke Taniguchi, Shigeki Sasaki

Research output: Contribution to journalArticlepeer-review

27 Citations (Scopus)

Abstract

Triplex forming oligonucleotides (TFOs) are some of the most promising tools in the antigene strategy for the development of gene targeting therapeutics. However, the stable triplex formation is restricted to the homopurine sequences consisting of purine nucleosides, dG and dA. Therefore, the T or dC nucleoside in the homopurine strand inhibits the stable triplex formation. We have developed W-shaped nucleoside analogues (WNAs) for the formation of the unnatural type triplex DNA, with sequences containing the interrupting site in an antiparallel triplex formation. In the present study, we tested the antigene effect of TFOs having WNA-βT, which increased the stability of the triplex formation with a target sequence including the TA interrupting site. We designed the GU TFO (WNA) and GU TFO (natural) for targeting sequences of the Bcl-2 or survivin oncogene. The gel shift assay showed that the TFO (WNA) formed more stable triplexes than the natural TFO. Remarkably, the Bcl-2- or survivin-targeted TFO (WNA) inhibited the cell proliferation and induced a caspase-dependent apoptosis. It was confirmed that the survivin-targeted TFO (WNA) more effectively decreased the number of survivin products in the A549 cell than the natural TFOs.

Original languageEnglish
Pages (from-to)8336-8341
Number of pages6
JournalOrganic and Biomolecular Chemistry
Volume10
Issue number41
DOIs
Publication statusPublished - Nov 7 2012

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Physical and Theoretical Chemistry
  • Organic Chemistry

Fingerprint

Dive into the research topics of 'An efficient antigene activity and antiproliferative effect by targeting the Bcl-2 or survivin gene with triplex forming oligonucleotides containing a W-shaped nucleoside analogue (WNA-βT)'. Together they form a unique fingerprint.

Cite this