An EMG Pattern Classification Method Based on a Mixture of Variance Distribution Models

Akira Furui, Hideaki Hayashi, Toshio Tsuji

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This paper proposes an electromyogram (EMG) pattern classification method based on a mixture of variance distribution models. A variance distribution model is a stochastic model of raw surface EMG signals in which the EMG variance is taken as a random variable, allowing the representation of uncertainty in the variance. In this paper, we extend the variance distribution model to the multidimensional case and enhance its flexibility for multichannel and processed EMG signals. The enhanced model enables the accurate classification of EMG patterns while considering the uncertainty in the EMG variance. The robustness and applicability of the proposed method are demonstrated through a simulation experiment using artificially generated data and EMG classification experiments using two real datasets.

Original languageEnglish
Title of host publication40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2018
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages5216-5219
Number of pages4
ISBN (Electronic)9781538636466
DOIs
Publication statusPublished - Oct 26 2018
Event40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2018 - Honolulu, United States
Duration: Jul 18 2018Jul 21 2018

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volume2018-July
ISSN (Print)1557-170X

Other

Other40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2018
CountryUnited States
CityHonolulu
Period7/18/187/21/18

All Science Journal Classification (ASJC) codes

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint Dive into the research topics of 'An EMG Pattern Classification Method Based on a Mixture of Variance Distribution Models'. Together they form a unique fingerprint.

  • Cite this

    Furui, A., Hayashi, H., & Tsuji, T. (2018). An EMG Pattern Classification Method Based on a Mixture of Variance Distribution Models. In 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2018 (pp. 5216-5219). [8513446] (Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS; Vol. 2018-July). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/EMBC.2018.8513446