### Abstract

Given an n-dimensional convex body by a membership oracle in general, it is known that any polynomial-time deterministic algorithm cannot approximate its volume within ratio (n/logn)^{n}. There is a substantial progress on randomized approximation such as Markov chain Monte Carlo for a high-dimensional volume, and for many #P-hard problems, while only a few #P-hard problems are known to yield deterministic approximation. Motivated by the problem of deterministically approximating the volume of a V-polytope, that is a polytope with a small number of vertices and (possibly) exponentially many facets, this paper investigates the problem of computing the volume of a “knapsack dual polytope,” which is known to be #P-hard due to Khachiyan (1989) [16]. We reduce an approximate volume of a knapsack dual polytope to that of the intersection of two cross-polytopes in a short distance, and give FPTASs for those volume computations. Interestingly, computing the volume of the intersection of two cross-polytopes (i.e., L_{1}-balls) is #P-hard, unlike the cases of L_{∞}-balls or L_{2}-balls.

Original language | English |
---|---|

Pages (from-to) | 87-106 |

Number of pages | 20 |

Journal | Theoretical Computer Science |

Volume | 833 |

DOIs | |

Publication status | Published - Sep 12 2020 |

### All Science Journal Classification (ASJC) codes

- Theoretical Computer Science
- Computer Science(all)