An investigation of deformation in copper single crystals using equal-channel angular pressing

Minoru Furukawa, Yukihide Fukuda, Keiichiro Oh-Ishi, Zenji Horita, Terence G. Langdon

Research output: Chapter in Book/Report/Conference proceedingConference contribution

18 Citations (Scopus)

Abstract

This paper describes experiments in which high purity copper single crystals of two different orientations were processed for one pass by equal-channel angular pressing (ECAP) and the deformed structures were examined using optical microscopy (OM), orientation imaging microscopy (OIM) and transmission electron microscopy (TEM). The first single crystal (0° specimen) was oriented within the entrance channel of the die so that the {111} slip plane and the 〈110〉 slip direction were parallel to the theoretical shear plane and shear direction, respectively. The second crystal (20° specimen) was oriented with the {111} slip plane and the 〈110〉 slip direction rotated by 20° in a clockwise sense from the theoretical shear plane and shear direction, respectively. For the 0° specimen, after passing through the shear plane there were two crystallographic orientations representing the initial orientation and an orientation rotated by 60° in a counter-clockwise sense from the initial orientation. For the 20° specimen, there was an orientation rotated by 20° in a counter-clockwise sense from the initial orientation after passing through the shear plane.

Original languageEnglish
Title of host publicationNanomaterials by Severe Plastic Deformation, NanoSPD3 - Proceedings of the 3rd International Conference on Nanomaterials by Severe Plastics Deformation
Pages113-118
Number of pages6
Publication statusPublished - Dec 1 2006
Event3rd International Conference on Nanomaterials by Severe Plastics Deformation, NanoSPD3 - Fukuoka, Japan
Duration: Sep 22 2005Sep 26 2005

Publication series

NameMaterials Science Forum
Volume503-504
ISSN (Print)0255-5476

Other

Other3rd International Conference on Nanomaterials by Severe Plastics Deformation, NanoSPD3
CountryJapan
CityFukuoka
Period9/22/059/26/05

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint Dive into the research topics of 'An investigation of deformation in copper single crystals using equal-channel angular pressing'. Together they form a unique fingerprint.

Cite this