AN INVESTIGATION OF THE EFFECTIVENESS OF PHASE FOR AUDIO CLASSIFICATION

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

While log-amplitude mel-spectrogram has widely been used as the feature representation for processing speech based on deep learning, the effectiveness of another aspect of speech spectrum, i.e., phase information, was shown recently for tasks such as speech enhancement and source separation. In this study, we extensively investigated the effectiveness of including phase information of signals for eight audio classification tasks. We constructed a learnable front-end that can compute the phase and its derivatives based on a time-frequency representation with mel-like frequency axis. As a result, experimental results showed significant performance improvement for musical pitch detection, musical instrument detection, language identification, speaker identification, and birdsong detection. On the other hand, overfitting to the recording condition was observed for some tasks when the instantaneous frequency was used. The results implied that the relationship between the phase values of adjacent elements is more important than the phase itself in audio classification.

Original languageEnglish
Title of host publication2022 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3708-3712
Number of pages5
ISBN (Electronic)9781665405409
DOIs
Publication statusPublished - 2022
Event47th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022 - Virtual, Online, Singapore
Duration: May 23 2022May 27 2022

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2022-May
ISSN (Print)1520-6149

Conference

Conference47th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022
Country/TerritorySingapore
CityVirtual, Online
Period5/23/225/27/22

All Science Journal Classification (ASJC) codes

  • Software
  • Signal Processing
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'AN INVESTIGATION OF THE EFFECTIVENESS OF PHASE FOR AUDIO CLASSIFICATION'. Together they form a unique fingerprint.

Cite this