An organic thin film photodiode as a portable photodetector for the detection of alkylphenol polyethoxylates by a flow fluorescence-immunoassay on magnetic microbeads in a microchannel

Ryoichi Ishimatsu, Azusa Naruse, Rong Liu, Koji Nakano, Masayuki Yahiro, Chihaya Adachi, Toshihiko Imato

Research output: Contribution to journalArticle

13 Citations (Scopus)

Abstract

An organic thin film photodiode (OPD) was successfully employed as a portable photodetector in a competitive enzyme-linked immunosorbent assay (ELISA) of a class of nonionic surfactants, namely alkylphenol polyethoxylates (APnEOs) which are an environmental pollutant. Microbeads that were chemically immobilized with an anti-APnEOs antibody were used in the assay. The OPD consisted of a layer of copper phthalocyanine (CuPc), C60 and a second layer of bathocuproine (BCP) with a bulk heterojunction composed of CuPc and C60 prepared by a vapor deposition method on an indium-tin oxide coated glass substrate. The OPD showed an incident photon-current efficiency (IPCE) of approximately 19% for light at a wavelength of 585 nm. This relatively high IPCE at 585 nm makes it suitable for detecting the fluorescence of resorufin (λem=585 nm), the product of the competitive ELISA, produced through the enzymatic reaction of Amplex Red with horseradish peroxidase (HRP) and H2O2. A fluorometric detector was assembled on a microchip by combining the fabricated OPD and a commercial LED as a photodetector and a light source, respectively. The photocurrent of the OPD due to the fluorescence of resorufin was proportional to the concentration of resorufin in the concentration range from 0 to 8 μM. When the fabricated OPD was used as a portable photodetector, the competitive ELISA of APnEOs using HRP labeled APnEOs (HRP-APnEOs) was performed on magnetic microbeads on which surface an anti-APnEOs antibody had been immobilized. A typical sigmoidal calibration curve was obtained and the data were in good agreement with a numerical simulation, where the photocurrent of the OPD was plotted against the concentration of APnEOs, determined via the competitive ELISA. The detection limit of the immunoassay for APnEOs was approximately 2 and 4 ppb in batch and flow system, respectively.

Original languageEnglish
Pages (from-to)139-145
Number of pages7
JournalTalanta
Volume117
DOIs
Publication statusPublished - Jan 1 2013

Fingerprint

Photodetectors
Microchannels
Photodiodes
Immunosorbents
Microspheres
Immunoassay
Assays
Fluorescence
Enzyme-Linked Immunosorbent Assay
Thin films
Horseradish Peroxidase
Photons
Enzymes
Photocurrents
Light
Environmental Pollutants
Antibodies
Vapor deposition
Surface-Active Agents
Calibration

All Science Journal Classification (ASJC) codes

  • Analytical Chemistry

Cite this

@article{8daebe1d85894837ab70bfed32970c62,
title = "An organic thin film photodiode as a portable photodetector for the detection of alkylphenol polyethoxylates by a flow fluorescence-immunoassay on magnetic microbeads in a microchannel",
abstract = "An organic thin film photodiode (OPD) was successfully employed as a portable photodetector in a competitive enzyme-linked immunosorbent assay (ELISA) of a class of nonionic surfactants, namely alkylphenol polyethoxylates (APnEOs) which are an environmental pollutant. Microbeads that were chemically immobilized with an anti-APnEOs antibody were used in the assay. The OPD consisted of a layer of copper phthalocyanine (CuPc), C60 and a second layer of bathocuproine (BCP) with a bulk heterojunction composed of CuPc and C60 prepared by a vapor deposition method on an indium-tin oxide coated glass substrate. The OPD showed an incident photon-current efficiency (IPCE) of approximately 19{\%} for light at a wavelength of 585 nm. This relatively high IPCE at 585 nm makes it suitable for detecting the fluorescence of resorufin (λem=585 nm), the product of the competitive ELISA, produced through the enzymatic reaction of Amplex Red with horseradish peroxidase (HRP) and H2O2. A fluorometric detector was assembled on a microchip by combining the fabricated OPD and a commercial LED as a photodetector and a light source, respectively. The photocurrent of the OPD due to the fluorescence of resorufin was proportional to the concentration of resorufin in the concentration range from 0 to 8 μM. When the fabricated OPD was used as a portable photodetector, the competitive ELISA of APnEOs using HRP labeled APnEOs (HRP-APnEOs) was performed on magnetic microbeads on which surface an anti-APnEOs antibody had been immobilized. A typical sigmoidal calibration curve was obtained and the data were in good agreement with a numerical simulation, where the photocurrent of the OPD was plotted against the concentration of APnEOs, determined via the competitive ELISA. The detection limit of the immunoassay for APnEOs was approximately 2 and 4 ppb in batch and flow system, respectively.",
author = "Ryoichi Ishimatsu and Azusa Naruse and Rong Liu and Koji Nakano and Masayuki Yahiro and Chihaya Adachi and Toshihiko Imato",
year = "2013",
month = "1",
day = "1",
doi = "10.1016/j.talanta.2013.08.044",
language = "English",
volume = "117",
pages = "139--145",
journal = "Talanta",
issn = "0039-9140",
publisher = "Elsevier",

}

TY - JOUR

T1 - An organic thin film photodiode as a portable photodetector for the detection of alkylphenol polyethoxylates by a flow fluorescence-immunoassay on magnetic microbeads in a microchannel

AU - Ishimatsu, Ryoichi

AU - Naruse, Azusa

AU - Liu, Rong

AU - Nakano, Koji

AU - Yahiro, Masayuki

AU - Adachi, Chihaya

AU - Imato, Toshihiko

PY - 2013/1/1

Y1 - 2013/1/1

N2 - An organic thin film photodiode (OPD) was successfully employed as a portable photodetector in a competitive enzyme-linked immunosorbent assay (ELISA) of a class of nonionic surfactants, namely alkylphenol polyethoxylates (APnEOs) which are an environmental pollutant. Microbeads that were chemically immobilized with an anti-APnEOs antibody were used in the assay. The OPD consisted of a layer of copper phthalocyanine (CuPc), C60 and a second layer of bathocuproine (BCP) with a bulk heterojunction composed of CuPc and C60 prepared by a vapor deposition method on an indium-tin oxide coated glass substrate. The OPD showed an incident photon-current efficiency (IPCE) of approximately 19% for light at a wavelength of 585 nm. This relatively high IPCE at 585 nm makes it suitable for detecting the fluorescence of resorufin (λem=585 nm), the product of the competitive ELISA, produced through the enzymatic reaction of Amplex Red with horseradish peroxidase (HRP) and H2O2. A fluorometric detector was assembled on a microchip by combining the fabricated OPD and a commercial LED as a photodetector and a light source, respectively. The photocurrent of the OPD due to the fluorescence of resorufin was proportional to the concentration of resorufin in the concentration range from 0 to 8 μM. When the fabricated OPD was used as a portable photodetector, the competitive ELISA of APnEOs using HRP labeled APnEOs (HRP-APnEOs) was performed on magnetic microbeads on which surface an anti-APnEOs antibody had been immobilized. A typical sigmoidal calibration curve was obtained and the data were in good agreement with a numerical simulation, where the photocurrent of the OPD was plotted against the concentration of APnEOs, determined via the competitive ELISA. The detection limit of the immunoassay for APnEOs was approximately 2 and 4 ppb in batch and flow system, respectively.

AB - An organic thin film photodiode (OPD) was successfully employed as a portable photodetector in a competitive enzyme-linked immunosorbent assay (ELISA) of a class of nonionic surfactants, namely alkylphenol polyethoxylates (APnEOs) which are an environmental pollutant. Microbeads that were chemically immobilized with an anti-APnEOs antibody were used in the assay. The OPD consisted of a layer of copper phthalocyanine (CuPc), C60 and a second layer of bathocuproine (BCP) with a bulk heterojunction composed of CuPc and C60 prepared by a vapor deposition method on an indium-tin oxide coated glass substrate. The OPD showed an incident photon-current efficiency (IPCE) of approximately 19% for light at a wavelength of 585 nm. This relatively high IPCE at 585 nm makes it suitable for detecting the fluorescence of resorufin (λem=585 nm), the product of the competitive ELISA, produced through the enzymatic reaction of Amplex Red with horseradish peroxidase (HRP) and H2O2. A fluorometric detector was assembled on a microchip by combining the fabricated OPD and a commercial LED as a photodetector and a light source, respectively. The photocurrent of the OPD due to the fluorescence of resorufin was proportional to the concentration of resorufin in the concentration range from 0 to 8 μM. When the fabricated OPD was used as a portable photodetector, the competitive ELISA of APnEOs using HRP labeled APnEOs (HRP-APnEOs) was performed on magnetic microbeads on which surface an anti-APnEOs antibody had been immobilized. A typical sigmoidal calibration curve was obtained and the data were in good agreement with a numerical simulation, where the photocurrent of the OPD was plotted against the concentration of APnEOs, determined via the competitive ELISA. The detection limit of the immunoassay for APnEOs was approximately 2 and 4 ppb in batch and flow system, respectively.

UR - http://www.scopus.com/inward/record.url?scp=84884692146&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84884692146&partnerID=8YFLogxK

U2 - 10.1016/j.talanta.2013.08.044

DO - 10.1016/j.talanta.2013.08.044

M3 - Article

C2 - 24209322

AN - SCOPUS:84884692146

VL - 117

SP - 139

EP - 145

JO - Talanta

JF - Talanta

SN - 0039-9140

ER -