Analysis of SEI formed with cyano-containing imidazolium-based ionic liquid electrolyte in lithium secondary batteries

Liwei Zhao, Jun ichi Yamaki, Minato Egashira

Research output: Contribution to journalArticlepeer-review

64 Citations (Scopus)

Abstract

Two kinds of cyano-containing imidazolium-based ionic liquid, 1-cyanopropyl-3-methylimidazolium-bis(trifluoromethanesulfonyl)imide (CpMI-TFSI) and 1-cyanomethyl-3-methylimidazolium-bis(trifluoromethanesulfonyl)imide (CmMI-TFSI), each of which contained 20 wt% dissolved LiTFSI, were used as electrolytes for lithium secondary batteries. Compared with 1-ethyl-3-methylimidazolium-bis(trifluoromethane-sulfonyl)imide (EMI-TFSI) electrolyte, a reversible lithium deposition/dissolution on a stainless-steel working electrode was observed during CV measurements in these cyano-containing electrolytes, which indicated that a passivation layer (solid electrolyte interphase, SEI) was formed during potential scanning. The morphology of the working electrode with each electrolyte system was studied by SEM. Different dentrite forms were found on the electrodes with each electrolyte. The SEI that formed in CpMI-TFSI electrolyte showed the best passivating effect, while the deposited film formed in EMI-TFSI electrolyte showed no passivating effect. The chemical characteristics of the deposited films on the working electrodes were compared by XPS measurements. A component with a cyano group was found in SEIs in CpMI-TFSI and CmMI-TFSI electrolytes. The introduction of a cyano functional group suppressed the decomposition of electrolyte and improved the cathodic stability of the imidazolium-based ionic liquid. The reduction reaction route of imidazolium-based ionic liquid was considered to be different depending on whether or not the molecular structure contained a cyano functional group.

Original languageEnglish
Pages (from-to)352-358
Number of pages7
JournalJournal of Power Sources
Volume174
Issue number2
DOIs
Publication statusPublished - Dec 6 2007

All Science Journal Classification (ASJC) codes

  • Renewable Energy, Sustainability and the Environment
  • Energy Engineering and Power Technology
  • Physical and Theoretical Chemistry
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Analysis of SEI formed with cyano-containing imidazolium-based ionic liquid electrolyte in lithium secondary batteries'. Together they form a unique fingerprint.

Cite this