Analytic energy gradients for multiconfigurational self-consistent field second-order quasidegenerate perturbation theory (MC-QDPT)

Haruyuki Nakano, Kimihiko Hirao, Mark S. Gordon

Research output: Contribution to journalArticlepeer-review

47 Citations (Scopus)

Abstract

An analytic energy gradient method for second-order quasidegenerate perturbation theory with multiconfigurational self-consistent field reference functions (MC-QDPT) is derived along the lines of the response function formalism (RFF). According to the RFF, the gradients are calculated without solving coupled perturbed equations. Instead, it is necessary to solve seven sets of linear equations in order to determine Lagrangian multipliers, corresponding to four sets of parameter constraining conditions and three sets of additional parameter defining conditions in the Lagrangian. Just one of these linear equations is a large scale linear equation; the others are reducible to just partial differentiations or simple equations solvable by straightforward subroutines.

Original languageEnglish
Pages (from-to)5660-5669
Number of pages10
JournalJournal of Chemical Physics
Volume108
Issue number14
DOIs
Publication statusPublished - Apr 8 1998
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Physics and Astronomy(all)
  • Physical and Theoretical Chemistry

Fingerprint

Dive into the research topics of 'Analytic energy gradients for multiconfigurational self-consistent field second-order quasidegenerate perturbation theory (MC-QDPT)'. Together they form a unique fingerprint.

Cite this