Abstract
Radiowave absorbers are frequently used in high power applications, such as radar sites, and the rise of temperature of the absorber has often become a matter of concern. In this paper, the finite-difference time-domain (FDTD) method combined with the heat transport equation (HTE), also known as the FDTD-HTE method, which has been widely used in the analysis of microwave heating or temperature increase in the human head due to portable phones, is used in the analysis of the wave absorption characteristics of a single-layer wave absorber. The complex permittivity of a sample made of epoxy resin, measured by a cavity-resonator method when the sample is irradiated by a high power field for different irradiation times, is used in the analysis, and the wave absorption characteristics of the absorber under investigation highly depend on the input power and irradiation time of the high power field.
Original language | English |
---|---|
Pages (from-to) | 866-871 |
Number of pages | 6 |
Journal | IEEE Transactions on Electromagnetic Compatibility |
Volume | 47 |
Issue number | 4 |
DOIs | |
Publication status | Published - Nov 1 2005 |
All Science Journal Classification (ASJC) codes
- Atomic and Molecular Physics, and Optics
- Condensed Matter Physics
- Electrical and Electronic Engineering