Antioxidant therapy alleviates oxidative stress by androgen deprivation and prevents conversion from androgen dependent to castration resistant prostate cancer

Masaki Shiota, Yoohyun Song, Ario Takeuchi, Akira Yokomizo, Eiji Kashiwagi, Kentaro Kuroiwa, Katsunori Tatsugami, Takeshi Uchiumi, Yoshinao Oda, Seiji Naito

Research output: Contribution to journalArticlepeer-review

40 Citations (Scopus)

Abstract

Prostate cancer progression from androgen dependence to castration resistance results at least in part from oxidative stress induced by androgen deprivation therapy. We elucidated the state and the role of oxidative stress induced by androgen deprivation therapy and the possibility of antioxidant therapy in human prostate cancer. We investigated 4-HNE (4-hydroxy-2-nonenal histidine adduct) staining, and Twist1, YB-1 and androgen receptor expression by immunohistochemistry in prostate cancer samples treated with or without neoadjuvant androgen deprivation therapy. Intracellular reactive oxygen species and protein expression were examined by CM-H 2DCFDA and Western blot analysis, respectively. A cell proliferation assay and a mouse xenograft model were used to assess tumor growth. Androgen deprivation therapy increased oxidative stress, as shown by 4-HNE staining in human prostate cancer tissue. Twist1 and YB-1 expression was up-regulated by androgen deprivation, resulting in androgen receptor over expression. In LNCaP and 22Rv1 cells androgen deprivation increased intracellular reactive oxygen species and evoked Twist1, YB-1 and androgen receptor over expression, resulting in cell growth in a castration resistant manner. Growth was alleviated by N-acetyl-cysteine, an electrophile that supports glutathione production. N-acetyl-cysteine also decreased LNCaP and 22Rv1 tumor growth in castrated and noncastrated mice. Androgen deprivation therapy induced oxidative stress in in vitro and human prostate cancer. Antioxidant therapy using N-acetyl-cysteine appears to be a promising therapeutic modality for prostate cancer.

Original languageEnglish
Pages (from-to)707-714
Number of pages8
JournalJournal of Urology
Volume187
Issue number2
DOIs
Publication statusPublished - Feb 2012

All Science Journal Classification (ASJC) codes

  • Urology

Fingerprint Dive into the research topics of 'Antioxidant therapy alleviates oxidative stress by androgen deprivation and prevents conversion from androgen dependent to castration resistant prostate cancer'. Together they form a unique fingerprint.

Cite this