TY - JOUR
T1 - Asn 54-linked glycan is critical for functional folding of intercellular adhesion molecule-5
AU - Ohgomori, Tomohiro
AU - Nanao, Tomohisa
AU - Morita, Akinori
AU - Ikekita, Masahiko
N1 - Copyright:
Copyright 2012 Elsevier B.V., All rights reserved.
PY - 2012/1
Y1 - 2012/1
N2 - Intercellular adhesion molecule-5 (ICAM-5, telencephalin) is a dendritically polarized type I membrane glycoprotein, and promotes dendritic filopodia formation. Although we have determined the N-glycan structures of ICAM-5 in a previous report, their function is unknown. Here, we produced fifteen ICAM-5 gene constructs, in which each potential N-glycosylation site was mutated, to elucidate the function of the N-glycans of ICAM-5, and observed the effects of transfection of them on a neuronal cell line, Neuro-2a (N2a). Only the N54Q mutant, which is the mutant for the most N-terminal glycosylation site, failed to induce filopodia-like protrusions in N2a cells. Immunofluorescence staining and cell surface biotinylation revealed that N54Q ICAM-5 was confined to the ER and also could not be expressed on the cell surface. This is further supported by the biochemical evidence that almost all N-glycans of N54Q ICAM-5 were digested by Endo glycosidase H and peptide:N-glycanase, indicating that almost all of them retain high-mannose-type structures in ER. In additon, it also failed to form disulfide bonds or functional protein complexes. The stable transformants of N54Q ICAM-5 showed retarded cell growth, but it was interesting that there was no apparent ER stress, because the mutant was sequentially degraded via ER associated degradation pathway by comparing the susceptibilities of the responses to various inhibitors of this pathway in wild-type and N54Q ICAM-5 transfectants. Taken together, the Asn 54-linked glycan is necessary for normal trafficking and function of ICAM-5, but is unassociated with ER-associated degradation of it.
AB - Intercellular adhesion molecule-5 (ICAM-5, telencephalin) is a dendritically polarized type I membrane glycoprotein, and promotes dendritic filopodia formation. Although we have determined the N-glycan structures of ICAM-5 in a previous report, their function is unknown. Here, we produced fifteen ICAM-5 gene constructs, in which each potential N-glycosylation site was mutated, to elucidate the function of the N-glycans of ICAM-5, and observed the effects of transfection of them on a neuronal cell line, Neuro-2a (N2a). Only the N54Q mutant, which is the mutant for the most N-terminal glycosylation site, failed to induce filopodia-like protrusions in N2a cells. Immunofluorescence staining and cell surface biotinylation revealed that N54Q ICAM-5 was confined to the ER and also could not be expressed on the cell surface. This is further supported by the biochemical evidence that almost all N-glycans of N54Q ICAM-5 were digested by Endo glycosidase H and peptide:N-glycanase, indicating that almost all of them retain high-mannose-type structures in ER. In additon, it also failed to form disulfide bonds or functional protein complexes. The stable transformants of N54Q ICAM-5 showed retarded cell growth, but it was interesting that there was no apparent ER stress, because the mutant was sequentially degraded via ER associated degradation pathway by comparing the susceptibilities of the responses to various inhibitors of this pathway in wild-type and N54Q ICAM-5 transfectants. Taken together, the Asn 54-linked glycan is necessary for normal trafficking and function of ICAM-5, but is unassociated with ER-associated degradation of it.
UR - http://www.scopus.com/inward/record.url?scp=84857373175&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84857373175&partnerID=8YFLogxK
U2 - 10.1007/s10719-011-9363-0
DO - 10.1007/s10719-011-9363-0
M3 - Review article
C2 - 22187327
AN - SCOPUS:84857373175
SN - 0282-0080
VL - 29
SP - 47
EP - 55
JO - Glycoconjugate Journal
JF - Glycoconjugate Journal
IS - 1
ER -